Настройка блока высокой частоты. Как настроить радио в киа рио

Настройки на определенную частоту есть у каждого радиоприемника, у большинства из них они даже фиксированные, что очень удобно. Если приемник цифровой, то есть у него есть электронная настройка, то зафиксировать ту или иную радиостанцию на определенном канале не составит большого труда. Немного сложнее будет этот процесс происходить на приемниках с обычной шкалой настройки. Но, в любом случае в инструкции пользователя подробно написано, как настроить радиоприемник и сколько станций вы можете сохранить в его памяти. Однако все это можно проделать только после покупки этого самого радиоприемника. С проблемой выбора в наши дни сталкиваются многие люди, потому что всевозможных моделей в магазинах представлено очень много.

Для желающих слушать все радиостанции оптимальным вариантом будет всеволновый приемник. А если у него будет возможность принимать УКВ волны, то это будет просто счастье, потому что такие приемники могут ловить и переговоры по рации. Поэтому стоит задуматься, как выбрать радиоприемник, для каких целей он будет использоваться и каким он должен быть? Если это будет «кабинетный» приемник, то для него вполне хватит стандартных FMи АМ диапазонов. Для «переносных» и «походных» приемников лучше иметь возможность «прослушивать» все частоты, поскольку походы могут быть и в незнакомые местности, где радио может вещать на любых частотах. «Переносными» же можно просто баловаться и подслушивать переговоры других людей, если они используют рации.

Если купить такой приемник не получится, то стоит задуматься, как собрать радиоприемник, чтобы он мог «слышать» в нужном диапазоне. Для этого надо быть радиолюбителем, либо иметь одного из них в очень близких друзьях. Можно, конечно, покопаться в Интернете и поискать пошаговую инструкцию по сборке радиоприемника. Но там тоже есть подводные камни, потому что не все необходимые детали можно купить, некоторые приходится делать самому. Поэтому если есть друг-радиолюбитель, то можно спросить у него, как работает радиоприемник, какие детали можно купить, а какие и как надо делать самому, а главное из чего? После того, как ответы на вопросы будут получены, можно приступать к поиску необходимых деталей, как для приемника, так и деталей для деталей к своему радио.

Придется немало побегать по магазинам, поискать в кладовой старую технику и поковыряться в ней в поисках нужных деталей. После этого придется много времени провести с паяльником в руках и израсходовать несколько грамм олова и проводов. И вот, когда все детали будут готовы, надо будет обратиться к другу с вопросом, как сделать радиоприемник, чтобы он работал надежно и долго. Каким будет радиоприемник, значения большого не имеет. И самодельный и покупной приемник принимает радиоволны. Если он будет приносить удовольствие своему хозяину, значит, он выполнит свое предназначение.

Высокочастотный блок содержит преобразовательный каскад, входные и гетеродинные контуры. В приемниках первого и высшего классов, а также в диапазоне УКВ перед преобразователем имеется усилитель высокой частоты. Проверку и регулировку блока высокой частоты можно разбить на три этапа: 1) проверка генерации гетеродина; 2) определение границ диапазона, часто называемое укладкой диапазона; 3) сопряжение входных и гетеродинных контуров.

Укладка диапазонов. Настройка приемника на принимаемую станцию определяется настройкой контуров гетеродина. Входные контуры и контуры УВЧ повышают лишь чувствительность и селективность приемника. При настройке его на разные станции частота гетеродина должна всегда отличаться от принимаемой частоты на величину, равную промежуточной. Для обеспечения постоянства чувствительности и селективности по диапазону желательно, чтобы это условие выполнялось на всех частотах диапазона. Однако это соотношение частот по всему диапазону

является идеальным. При одноручной настройке получить такое сопряжение затруднительно. Схемы гетеродинов, применяемые в радиовещательных приемниках, обеспечивают точное сопряжение настроек входных и гетеродинных контуров в каждом диапазоне только в трех точках. При этом отклонение от идеального сопряжения в остальных точках диапазона оказывается вполне допустимым (рис.82).

Для хорошей чувствительности на диапазоне KB достаточно двух точек точного сопряжения. Необходимые соотношения между частотами входного и гетеродинного контуров достигаются усложнением схемы последнего. В гетеродинный контур, помимо обычного конденсатора настройки С 1 и подстроечного конденсатора С2, входит дополнительный конденсатор СЗ, называемый сопрягающим (рис. 83). Этот конденсатор (обычно постоянной емкости с допуском ±5 %) включается последовательно с конденсатором переменной емкости. Индуктивность катушки гетеродина меньше, чем индуктивность катушки входного контура.

Чтобы правильно определить границы диапазона, необходимо помнить следующее. На частоту гетеродина в начале каждого диапазона в основном влияет изменение емкости подстроечного конденсатора С 2 , а в конце диапазона - изменение положения сердечника катушки индуктивности L и емкости сопрягающего конденсатора СЗ, За начало диапазона можно считать максимальную частоту, на которую может быть настроен приемник в данном диапазоне.

Приступая к настройке контуров гетеродина, следует выяснить последовательность настройки по диапазонам. В некоторых схемах приемников контурные катушки диапазона СВ являются частью контурных катушек диапазона ДВ. В этом случае настройку нужно начинать со средневолнового, а затем настраивать длинноволновой.

В большинстве приемников применяют такую схему переключения диапазонов, которая обеспечивает независимую настройку каждого диапазона. Поэтому последовательность настройки может быть любая.

Укладку диапазона производят по методу двух точек, сущность которого заключается в установке границы высшей частоты (начало диапазона) с помощью подстроечного конденсатора, а затем низшей частоты (конец диапазона) сердечником контурной катушки (рис. 84). Но при установке границы конца диапазона несколько сбивается настройка начала диапазона. Поэтому нужно вновь проверить и подстроить начало диапазона. Эта операция производится до тех пор, пока в обеих точках диапазона не будет достигнуто соответствие шкале.

Сопряжение входных и гетеродинных контуров. Настройка производится в двух точках и проверяется в третьей. Частоты точного сопряжения в приемниках с промежуточной частотой 465 кГц для середины диапазона (f ср) и концов (f 1 и f 2) могут быть определены по формулам:

Сопряжение контуров производят в расчетных точках, которые для стандартных радиовещательных диапазонов имеют следующие значения

В отдельных моделях радиоприёмников частоты сопряжения могут немного отличаться. Нижняя частота точного сопряжения обычно выбирается на 5...10 % выше минимальной частоты диапазона, а верхняя - на 2...5 % ниже максимальной. Конденсаторы, переменной емкости позволяют настраивать контуры на частоты точного сопряжения при поворотах на углы 20...30, 65...70 и 135...140°, отсчитываемые от положения минимальной емкости.

Для настройки ламповых радиоприемников и достижения сопряжения выход сигнал генератора соединяется с входом радиоприемника (гнезда Антенна, Земля) через всеволновый эквивалент антенны (рис. 85). Транзисторные радиоприемники, имеющие внутреннюю магнитную антенну, настраивают!: помощью генератора стандартного поля, который представляет собой рамочную антенну, соединенную с генератором через безиндуктивный резистор сопротивлением 80 Ом.

Декадный делитель на конце кабеля генератора при этом не подключают. Рамку антенны делают квадратной со стороной в 380 мм из медного провода диаметром 4...5 мм. Радиоприемник располагается на расстоянии 1 м от антенны, причем ось ферритового стержня должна быть перпендикулярна к плоскости рамки (рис. 86). Величина напряженности поля в мкВ/м на расстоянии 1 м от рамки равна произведению показаний плавного и ступенчатого аттенюаторов генератора.

В диапазоне KB нет внутренней магнитной антенны, поэтому сигнал с выхода генератора подается к гнезду внешней антенны через конденсатор емкостью 20...30 пФ или на штыревую антенну через разделительный конденсатор емкостью 6,8... 10 пФ.

Приемник настраивают по шкале на высшую частоту точного сопряжения, а сигнал-генератор подстраивают по максимальному напряжению на выходе приемника. Регулируя подстроечный конденсатор (триммер) входного контура и постепенно уменьшая величину напряжения генератора, добиваются максимального увеличения выходного напряжения приемника. Таким образом осуществляется сопряжение в этой точке диапазона.

Затем приемник и генератор перестраивают на низшую частоту точного сопряжения. Вращением сердечника катушки входного контура добиваются максимального напряжения на выходе приемника. Для большей точности эту операцию повторяют до тех пор, пока не будет достигнуто максимальное напряжение на выходе приемника. После настройки контуров на краях диапазона проверяют точность сопряжения на средней частоте диапазона (третья точка). Чтобы уменьшить количество перестроек генератора и приемника, операции по укладке диапазона и сопряжения контуров часто выполняют одновременно.

Настройка ДВ-диапазона. Генератор стандартных сигналов остается подключенным к схеме приемника через эквивалент антенны. На генераторе устанавливают нижнюю частоту диапазона 160 кГц и выходное напряжение 200...500 мкВ при глубине модуляции 30...50 %. На шкале приемника устанавливают нижнюю частоту сопряжения (угол поворота ротора КПЕ примерно 160...170°).

Регулятор усиления переводят в положение максимального усиления, а регулятор полосы - в положение узкой полосы. Затем вращением сердечника катушек гетеродинного контура добиваются максимума напряжения на выходе приемника. Не меняя частоты генератора и приемника, аналогичным образом настраивают катушки контуров УВЧ (если он есть) и входных контуров до получения максимального напряжения на выходе приемника. При этом постепенно уменьшают величину выходного напряжения генератора.

Настроив конец диапазона ДВ, устанавливают конденсатор переменной емкости в положение, соответствующее точке сопряжения на высшей частоте диапазона (угол поворота КПЕ 20...30°), Частоту генератора устанавливают равной 400 кГц, а выходное напряжение - 200...600 мкВ. Вращением подстроечных конденсаторов контуров сначала гетеродина, а затем УВЧ и входных контуров добиваются максимального выходного напряжения приемника.

Настройка контуров на высшей частоте диапазона изменяет настройку на низшей частоте. Для повышения точности настройки описанный процесс необходимо повторить в той же последовательности 2...3 раза. При повторной подстройке ротора КПЕ следует ставить в прежнее положение, т. е. в то, при котором проводилась первая настройка. Затем надо проверить точность сопряжения в середине диапазона, Частота точного сопряжения в середине диапазона ДВ равна 280 кГц. Установив соответственно на генераторе и шкале приемника эту частоту, проверяют точность градуировки и чувствительность приемника. Если наблюдается провал чувствительности приемника в середине диапазона, то необходимо изменить емкость сопрягающего конденсатора, а процесс настройки повторить.

Заключительный этап - проверка правильности настройки. Для этого в настроенный контур вносят сначала одним, потом вторым концом испытательную палочку, представляющую собой изоляционный пруток (или трубку), на одном конце которого закреплен стержень из феррита, а на другом - из меди. Если настройка произведена правильно, то при поднесении к полю катушки контура любого конца испытательной палочки сигнал на выходе приемника должен уменьшаться. В противном случае один из концов палочки будет уменьшать сигнал, а другой - увеличивать. После того как ДВ-диапазон настроен, можно аналогичным образом настраивать С В- и КВ-диапазоны. Однако, как уже отмечалось, на КВ-диапазоне сопряжение достаточно производить в двух точках: на нижней и верхней частотах диапазона. В большинстве радиоприемников диапазон KB разделен на несколько поддиапазонов, В этом случае частоты точного сопряжения имеют следующие значения!

Особенности настройки КВ-диапазона. При настройке КВ-диапазона сигнал от генератора может прослушиваться в двух местах шкалы настройки. Один сигнал - основной, а второй - так называемый зеркальный. Объясняется это тем, что на КВ-диапазоне зеркальный сигнал подавляется значительно хуже, и поэтому его можно спутать с Основным сигналом, Поясним это примером. На вход приемника подано напряжение с частотой 12 100 кГц, т. е. начало КВ-диапазона. Для того чтобы на выходе преобразователя частоты получить частоту, равную промежуточной, т, е. 465 кГц, необходимо гетеродин настроить на частоту, равную 12 565 кГц. При настройке гетеродина на частоту 465 кГц ниже принимаемого сигнала, т. е. 11 635 кГц, на выходе преобразователя тоже обеспечивается напряжение промежуточной частоты. Таким образом, промежуточная частота в приемнике будет получаться при двух частотах, гетеродина, из которых одна выше частоты сигнала на величину промежуточной частоты (правильная), а другая - ниже (неправильная). В процентном отношении разница между правильной и неправильной частотами гетеродина очень мала.

Поэтому при настройке КВ-диапазона следует из двух настроек гетеродина выбрать ту, которая получается при меньшей емкости конденсатора контура или при более вывернутом сердечнике катушки. Правильность настройки гетеродина проверяют при постоянной частоте сигнал генератора. При увеличении емкости (или индуктивности) контура гетеродина должен прослушиваться сигнал еще в одном месте шкалы приемника.. Можно также проверить правильность настройки гетеродина при неизменной настройке приемника. При изменении частоты сигнал генератора на частоту, равную двум промежуточным, т. е. на 930 кГц, также должен прослушиваться сигнал. Более высокая частота в этом случае называется зеркальной, а более низкий по частоте сигнал является основным.

Настройка антенного фильтра. Настройка блока высокой частоты начинается с настройки антенного фильтра. Для этого выход сигнал генератора соединяют с входом приемника через эквивалент антенны. На шкале частот генератора устанавливают частоту 465 кГц и глубину модуляции 30...50 % Выходное напряжение генератора должно быть таким, чтобы измеритель выхода, подключенный для контроля выходного напряжения приемника, показывал напряжение порядка 0,5... 1 В. Переключатель диапазонов приемника устанавливают в положение ДВ, а стрелку-визир настройки - на частоту 408 кГц. Вращая сердечник контура антенного фильтра, добиваться минимального напряжения на выходе приемника, при этом по мере ослабления сигнала увеличивают выходное напряжение генератора.

После окончания настройки все подстроенные сердечники контурных катушек, положения катушек магнитной антенны необходимо зафиксировать.

С помощью магнитолы можно скоротать время в пути. Обычно водители предпочитают слушать музыку ненавязчивую, чтобы играла фоном и не мешала рулить. Для этого больше всего подходит авторадио, которое сперва нужно настроить. Но многие не знают, как правильно настроить радио на магнитоле в машине.

В основном настройка радио заключается в нескольких несложных этапах. Выбирается диапазон вещания и проводится поиск радиоканалов, которые сохраняются в памяти тюнера. Поиск радиостанций происходит либо в автоматическом, либо в ручном режиме. В первом случае радиоканалы сохраняются в порядке убывания качества вещания.

Рассмотрим более подробно, как провести настройку радио на распространенных автомагнитолах.

Пионер

Если вы задались вопросом, как настроить радио на магнитоле Pioneer, не переживайте, настройка происходит очень легко. При автоматической настройке Пионера нажимается FUNC, следом BSM. Для старта поиска радиоканалов нажимается кнопка вправо или вверх, после окончания включится музыка первой найденной радиостанции.

Для ручной установки в режиме BAND продолжительно нажимается >>|. Будет запущен поиск любой первой станции в этом радиусе. После чего аппарат перестанет сканировать и включит воспроизведение найденной станции. Затем нужно будет её сохранить, для этого долго держите клавишу с нужным номером. Если вам не нужна найденная станция, нужно нажать клавишу вправо и удерживать её. Сканирование продолжится до момента нахождения новой станции.

С помощью данной функции можно сохранить в памяти до 6 станций в первом банке. После данной манипуляции нажимаем на кнопку BAND и попадаем во второй банк, он на дисплее показывается надписью F2. Во втором банке можно аналогично записать в память до 6 станций, а также существует и третий банк. Чаще всего банков три, но их бывает и больше. В итоге при наличии трёх банков у вас будут активны и сохранены 18 станций. Теперь вы знаете, как настроить радио на магнитоле Пионер.

Сони

Настроить радио в магнитоле Sony также не составит проблем. Поиск станций осуществляется обычно двумя распространенными способами: вручную или автоматически. Автоматическое запоминание радиостанций:

  1. Включить магнитолу. Длительно нажав кнопку Source, дождаться появления на табло надписи ТЮНЕР.
  2. Смена диапазона происходит при нажатии кнопки Mode. В случае нажатия на регулятор-джойстик высветится меню опций.
  3. Крутить джойстик до появления надписи опции ВТМ. Радиоканалы стандартно закрепляются за клавишами с номером.

Для ручного сканирования и сохранения необходимо:

  1. Включить радио и начать поиск станций.
  2. После того как будет найдена нужная радиостанция, требуется нажать номерную клавишу от 1 до 6, после чего появится название «Mem». Примечание: при сохранении радиостанции на цифре, у которой уже есть радиостанция, предыдущая автоматически стирается.

Таким образом, настроить радио в магнитоле Сони можно за 5-10 минут.

Супра

После нажатия кнопки MODE выбираем функцию Радио, затем на экране высветится RADIO и сохранённый диапазон с частотой вещания. При нажатии BND выбирается нужный диапазон радиовещания.

Нажать и удержать кнопку >>||.

Потом нажмите кнопку >>|| для выбора нужной станции. Если эти клавиши не нажимать до десяти секунд, все вернётся в исходный режим работы.

Настройка в автоматическом режиме и осуществление сканирования выбранных радиостанций

Поиск существующих в памяти радиостанций:

Кратковременно нажав клавишу AS/PS, запустите поиск сохранённых радиоканалов. Любая станция может прослушиваться примерно пару секунд. Для автоматического сохранения радиоканалов удерживайте клавишу AS/PS. Приемник настроит шесть оптимальных станций, которые являются наиболее мощными в этом диапазоне вещания. Данная опция может быть применена в любом волновом диапазоне. После завершения автоматического сохранения станций приёмник прекратит их сканирование.

Для настройки определённой радиостанции нажмите кнопку >>||, так осуществится сканирование и выбор радиоканалов с лучшим сигналом приёма. Нажав кнопку >>||, можно вручную выбрать нужную вам станцию. Удержите клавишу с номерами от 1 до 6 примерно пару секунд для запоминания канала под нужной клавишей.

JVS

При настройке станций есть возможность оставить в тюнере 30 радиоканалов FM и 15 каналов АМ.

Установка станций вручную:

  1. Выбираем полосу вещания, нажимая клавишу TUNER BAND.
  2. Кликните на кнопку 4 для осуществления установки станции.
  3. Удержите клавишу с любым выбранным номером на панели для запоминания станции в памяти магнитолы. Избранный номер начнёт моргать, после чего вы увидите станцию, сохранённую под выбранным номером. Например: Для настройки станции под цифрой 14 нажмите клавишу +10, а после этого клавишу 4 примерно на три секунды или более.
  4. Для сохранения в памяти устройства других радиостанций нужно повторить пункты с первого по третий. А для изменения настройки всей станции нужно повторить весь процесс сначала.

Настройка станций в автоматическом режиме:

Станциям будут даны номера путем повышения частоты радиуса действия.

  1. Выбрать радиус действия, нажав клавишу TUNER BAND.
  2. Нажать и удерживать кнопку AUTO PRESET на панели.
  3. Для установки другого радиуса действия нужно вновь пройти этапы с первого по второй.

Для замены выбранных станций в автоматическом режиме нужно использовать ручную установку.

Кенвуд

Магнитолы Кенвуд предлагают три вида настройки авторадио: автоматический (AUTO), локальный (LO.S.) и ручной.

  1. Нажмите SRC до появления надписи «TUnE».
  2. Нажмите FM или АМ для выбора диапазона.

При автоматической настройке жмите >>| или |.

В случае ручной настройки после всех вышеизложенных действий загорится ST, означающая найденную станцию.

Всего одна микросхема понадобится вам, чтобы построить простой и полноценный FM приемник, который способен принимать радиостанции в диапазоне 75-120 МГц. FM приемник содержит минимум деталей, а его настройка, после сборки, сводится к минимуму. Так же обладает хорошей чувствительностью для приема УКВ ЧМ радиостанций.
Все это благодаря микросхеме фирмы «Philips» TDA7000, которую можно купить без проблем на нашем любимом Али экспресс – .

Схема приемника

Вот сама схема приемника. В неё добавлены ещё две микросхемы, чтобы в конце получилось полностью законченное устройство. Начнем рассматривать схему справа налево. На ходовой микросхеме LM386 собран, уже ставший классическим, усилитель низкой частоты для небольшой динамической головки. Тут, думаю, все ясно. Переменным резистором регулируется громкость приемника. Далее, выше добавлен стабилизатор 7805, преобразующий и стабилизирующий питающее напряжение до 5 В. Которое нужно для питания микросхемы самого приемника. И наконец, сам приемник собран на TDA7000. Обе катушки содержит 4,5 витка провода ПЭВ-2 0,5 при диаметре обмотки 5 мм. Вторая катушка наматывается на каркас с подстроечником из феррита. Приемник настраивается на частоту переменным резистором. Напряжение, с которого идет на варикап, которой в свою очередь меняет свою емкость.
При желании от варикапа и электронного управления можно отказаться. А на частоту можно настраиваться либо подстроечным сердечником, либо переменным конденсатором.

Плата FM приемника

Монтажную плату для приемника я начертил таким образом, чтобы не сверить в ней отверстия, а чтобы как с SMD компонентами напаивать все с верху.

Размещение элементов на плате


Использовал классическую технологию ЛУТ для производства платы.



Распечатал, прогрел утюгом, протравил и смыл тонер.



Напаял все элементы.

Настройка приемника

После включения, если все собрано правильно, вы должны услышать шипение в динамической головке. Это означает что все пока работает нормально. Вся настройка сводиться к настройке контура и выбора диапазона для приема. Я произвожу настройку вращая сердечник катушки. Как диапазон приема настроем, каналы в нем можно искать переменным резистором.

Заключение

Микросхема имеет хорошую чувствительность, и на полуметровый отрезок провода, вместо антенны, ловиться большое количество радиостанций. Звук чистый, без искажений. Такую схему можно применить в простой радиостанции, вместо приемника на сверхгенеративном детекторе.

Регулировки в радиоприемных устройствах .

В радиоприемных устройствах с помощью регулировок устанавливаются и поддерживаются требуемые режимы работы отдельных элементов схемы, обеспечивающие как наилучшие условия приема полезного сигнала, так и преобразование его в информацию.

Все виды регулировок можно разделить на две основные группы:

    Регулировки, изменяющие параметры семы, формирующие частотные и фазовые характеристики приемника;

    Регулировки, обеспечивающие требуемые режимы работы элементов приемника.

К первой группе относится настройка на заданную частоту или подстройка на рабочую частоту в определенных пределах. Регулировка избирательных свойств приемника и его полосы пропускания, установка определенных фазовых соотношений.

Вторая группа включает в себя установку заданных электрических режимов активных приборов (транзисторов и ламп), установку режимов отдельных узлов, регулировку усиления приемного тракта, согласование отдельных элементов схемы. В зависимости от целевого назначения перечисленные регулировки делятся на производственно-технологические и эксплуатационные. Первые осуществляются в процессе производства или в процессе ремонта. К ним можно отнести подстройку контуров подстроичными конденсаторами или сердечниками катушек, настройка фильтров, установка требуемых напряжений на электродах, согласование фидерных линий и т.д.

Эксплуатационные регулировки могут быть как ручными, так и автоматическими.

Основными из них являются:

    Регулировка частоты настройки приемника;

    Регулировка избирательности;

    Регулировка усиления.

Регулировка частоты.

Регулировка частоты включает в себя предварительную настройку на номинальную частоту принимаемого сигнала и подстройку во время работы.

Настройка приемника может осуществляться как по эталонному генератору, так и по принимаемому полезному сигналу. Число перестраиваемых элементов определяется схемой приемника и диапазоном частот. Настройка на заданную частоту может быть либо плавной в диапазоне работы приемника, либо фиксированной, обеспечивающей установку конечного числа частот.

Перестройка может осуществляться как вручную, так и с помощью электромеханического привода, с фиксацией заранее установленных рабочих частот. В супергетеродинных приемниках сантиметровых и миллиметровых диапазонов преселектор в большинстве случаев широкополосен и настройка приемника осуществляется путем установки частоты гетеродина. В клистронном гетеродине это может осуществляться за счет механической настройки резонатора, или изменением напряжения на отражателе.

При использовании в приемниках кварцевой стабилизации частоты гетеродина перестройка осуществляется либо путем смены кварцев, либо за счет использования нескольких кварцованных генераторов, обеспечивающих сетку стабильных частот в заданном диапазоне.

В супергетеродинных приемниках с перестраиваемым преселектором осуществляется сопряжение настройки контуров УВЧ и гетеродина. Изменение частот при настройке должно обеспечивать постоянство промежуточной частоты.

В большинстве случаев настройка контуров осуществляется с помощью конденсаторов переменной емкости, конструктивно объединенных в один блок. В зависимости от типа приемника и его назначения конденсаторы могут быть с воздушным или с пленочным диэлектриком, дискретные конденсаторы или варикапы.

Конденсаторы переменной емкости обладают достаточным коэффициентом перекрытия диапазона емкостей, высокой добротностью и линейностью изменения емкости. Недостатками являются достаточно большие габариты узла настройки, сложность конструкции при большом числе одновременно перестраиваемых контуров, большое время настройки.

При использовании блока конденсаторов переменной емкости параметры отдельных элементов блока примерно одинаковы, примерно одинаковы, будут и коэффициенты перекрытия емкости и, следовательно, диапазона частоты. Однако эти конденсаторы не позволяют обеспечить постоянную разность частот в преобразователях супергетеродинных приемников.

При промежуточной частоте f пр =f г -f с коэффициенты перекрытия диапазона должны быть различными.

При одинаковом же коэффициенте перекрытия разность между частотами настройки контуров УВЧ и гетеродина будет по диапазону, так как контура УВЧ будут расстраиваться относительно частоты сигнала. Это приведет к уменьшению коэффициента усиления, который снижается тем больше, чем шире полоса пропускания усилителя.

Для устранения этого недостатка осуществляется сопряжение настройки контуров. Один из вариантов сопряжения является введение дополнительных конденсаторов в контур гетеродина.

Индуктивность L г L выбирается такой, чтобы в середине диапазона оба контура имели разницу в настройке равную f пр . Конденсаторы же выбираются следующим образом C в » C мин , а C а « C макс . В этом случае на низких частотах рабочего диапазона, когда C = C макс емкость конденсатора C А роли не играет, а емкость конденсатора C в уменьшая результирующую емкость колебательного контура увеличивает его резонансную частоту и, следовательно, частоту гетеродина, приближая разность частот к значению промежуточной частоты.

Дискретный конденсатор представляет собой магазин конденсаторов постоянной емкости с последовательно-параллельным включением групп. Применение этих конденсаторов сокращает время перестройки, которое в первую очередь определяется быстродействием схемы управления и самим коммутатором. Возможны смещенные варианты, когда для перестройки колебательных систем используются одновременно дискретные конденсаторы и дискретные катушки индуктивности.

Основной недостаток перестройки с помощью дискретных конденсаторов это ограниченность числа настроек и сложность коммутирующих цепей.

В относительно маломощных каскадах в качестве элемента перестройки частоты используется варикап, который практически безинерционен в изменении емкости и требует маломощный источник управляющего напряжения. Применение варикапов позволяет автоматизировать процесс настройки.

Существенным недостатком варикапа является значительная нелинейность его характеристики, что улучшает селективные свойства приемника. Один из вариантов уменьшения влияния нелинейности характеристики является увеличение напряжения смещения, приложенного к диоду. Возможно включение в емкостную часть контура дополнительного линейного конденсатора, однако при этом снижается коэффициент перекрытия диапазона частот.

Лучший результат компенсации нелинейности характеристики дает всречно-последовательное включение варикапов.

В этом случае благодаря компенсации четных гармоник тока снижают влияние нелинейности характеристик. При этом необходимо обеспечить симметрию плеч за счет подбора варикапов по параметрам.

Настройка за счет изменения индуктивности осуществляется с помощью вариометров или дискретных катушек индуктивности. В первом случае используется механическое перемещение сердечника катушки внутри ее каркаса или замыкание части витков с помощью токосъемника. В этом случае коэффициент перекрытия порядка 4÷5. Однако необходимо учитывать, что одновременно с изменением индуктивности катушки изменяется и ее добротность, а сам механизм перестройки достаточно сложен и громоздок, что ограничивает число одновременно перестраиваемых контуров. Использование дискретной катушки индуктивности позволяет применять электронную перестройку, которая аналогично настройке дискретным конденсатором, но еще более громоздка.

В профессиональных приемниках СВЧ диапазона находит применение неперестраиваемый вход и коммутируемые фильтры. При неперестраиваемом широкополосном приселекторе антенна, УВЧ и преобразователь частоты согласуются с помощью широкополосных трансформаторов, а настройка обеспечивается с помощью перестройки гетеродина.

На практике широкое применение находит фильтровой способ настройки приемника, при котором весь диапазон рабочих частот перекрывается рядом неперестраиваемых фильтров, полоса пропускания которых выбирается с запасом по взаимному перекрытию. Число фильтров определяется требованием к селективности приемника и ограничивается сложностью цепи управления.

Таким образом, для приема сигналов в диапазоне частот необходимо выполнение ряда операций, в том числе коммутацию соответствующих цепей, переключение антенн и т. д.

Важным этапом в работе любого приемного устройства является точная настройка на рабочую частоту, который включает в себя установку необходимых частот гетеродина (в профессиональных приемниках их может быть несколько) и настройку резонансных цепей преселектора на частоту сигнала. При работе с использованием в гетеродине синтезаторов частоты имеется возможность сравнительно легко перестраиваться в течение малого промежутка времени. Однако труднее осуществлять быструю перестройку преселектора с включением нужного поддиапазона и перестройкой резонансных цепей. В этом случае используются различные коммутационные цепи, от элементов которых требуется наличие высокого сопротивления контакта для коммутируемого тока в разомкнутом состоянии и минимального в замкнутом. Они так же должны обладать малой проходной емкостью между контактами на рабочей частоте. В селективных цепях коммутация осуществляется механическими или электрическими элементами.

Геркон – это герметизированные и магнитоуправляемые контакты из магнитомягкого сплава. Капсула заполняется инертным газом или вакуумированна. При внесении капсулы в магнитное поле лепестки замыкаются, а при ослаблении напряженности поля размыкаются за счет собственной упругости. Магнитное поле создается специальной катушкой управления.

Коммутационные диоды с электронным управлением имеют большое сопротивление при напряжении обратного смещения и обладают малым дифференциальным сопротивлением при токе прямого смещения.

Регулировка полосы пропускания приемника.

Избирательные свойства приемника как правило обеспечиваются при его проектировании, но в ряде случаев появляется такая необходимость в процессе эксплуатации. Так в приемниках связных радиолиний это позволяет ослабить воздействие соседних по частоте мешающих станций.

Регулировка может осуществляться дискретно или плавно и, как правило, вручную. Регулируемыми элементами могут быть избирательные системы линейной части приемного тракта, главным образом в УПЧ, а также в каскадах низких частот.

Для плавной регулировки полосы пропускания в тракте УПЧ используются регулируемые фильтры, представляющие собой систему двух перестраиваемых контуров, связанных между собой с помощью кварцевого резонатора и являющихся нагрузкой одного из каскадов УПЧ. Таким образом при изменении расстройки контуров можно регулировать полосу пропускания, так как при настройке их на промежуточную частоту полоса пропускания максимальна, а при расстройке она сужается. Пределы регулировки полосы пропускания определяются допустимыми потерями в усилении.

В приемниках, имеющих в тракте УПЧ фильтры сосредоточенной селекции, регулировка избирательности осуществляется путем переключения элементов фильтра при сохранении в определенных пределах прямоугольности резонансной характеристики.

В последетекторной части приемника регулировка полосы пропускания осуществляется за счет изменения АЧХ в области верхних и нижних частот (регулировки тембра). Пассивные регуляторы тембра включаются во входную цепь усилителя. Регулятор, снижающий усиление в области высоких частот включается параллельно входной цепи усилителя и представляется в следующем виде.

Значения R p и C выбираются намного больше аналогичных входных параметров усилителя. При R p =0 спад АЧХ практически определяется постоянной времени τ = c R у. Если R p ≠0 спад будет только до частоты f 1 , после которой сопротивление Χ c =1/ωc становится существенно меньше R p и не влияет на результирующее сопротивление цепи с R p . АЧХ не изменяется до частоты, после которой она спадает за счет емкости C у. Пассивный регулятор тембра, повышающий усиление в области НЧ имеет следующий вид и работает аналогично цепи R ф C ф.

Регулировки усиления в РПУ.

Для данной схемы каскада усиления K 0 =p 1 p 2 SR э, где p 1 и p 2 – соответствующие коэффициенты включения, S – крутизна коллекторной характеристики транзистора, R э – эквивалентное сопротивление нагрузки с учетом шунтирования контура транзистором и нагрузкой. Регулировка коэффициента усиления может осуществляться изменением любой входящей в это выражение величины. При выборе способов регулировки требуется получение существенного изменения K 0 от напряжения регулировки, малый ток регулировки, малая зависимость других параметров усилителя при изменении коэффициента усиления.

    Регулировка усиления изменением крутизны характеристики.

Данная регулировка осуществляется за счет изменения режима работы активного элемента, поэтому ее можно считать режимной. В этом случае необходимо менять напряжение смещения на управляющем электроде, что и приведет к изменению крутизны в рабочей точке (в биполярном транзисторе кроме S меняются q вх и q вых). Регулирующее напряжение может подаваться как в цепь базы, так и в цепь эмиттера.

В данной схеме напряжение смещения на переходе Э-Б будет U эб =U 0 -E ρ . По мере увеличения E ρ U эб уменьшается, что приведет к уменьшению тока коллектора I к0 и S к, а как следствие уменьшение K 0 . Цепь регулировки усиления должна обеспечить ток в данной цепи примерно равный I 0э, а это значит, что I ρ должен быть относительно большим. Предпочтительнее подавать E ρ в цепь базы, когда U эб =U 0 -E ρ . Ток регулировки I ρ =I g , составляет I g ≈(5÷10)I 0б и невелик.

Данная схема обеспечивает меньшую стабильность работы из–за отсутствия резистора в цепи эмиттера, т.к. его наличие приведет к уменьшению эффекта регулировки. В противном случае надо увеличивать E ρ .

    Регулировка изменением R э может осуществляться различными способами.

Включением в контур диода.

    При E ρ >U к диод закрыт и не шунтирует контур. R э и K 0 велики.

    При E ρ

    Регулировка изменением коэффициентов включения.

Напряжение с контура подается на делитель Z 1 Z 2 . Изменяя одно из сопротивлений можно менять p 1 .Аналогична схема регулировки p 2 . В качестве сопротивлений можно использовать катушки с переменной индуктивностью или конденсаторы с переменной емкостью. Однако при этом не избежать расстройки контура. Лучшие результаты дает использование аттенюатора с переменным коэффициентом передачи, включенным между каскадами. В качестве аттенюатора применяют регулируемые делители, емкостные делители на варикапах, мостовые схемы.

При |E ρ |<|U 0 | диоды Д 1 и Д 2 открыты, а Д 3 закрыт. Коэффициент передачи максимален. По мере увеличения E ρ динамическое сопротивление диодов Д 1 и Д 2 увеличивается, а Д 3 – уменьшается, уменьшая коэффициент передачи аттенюатора.

Возможно, в качестве управляемого сопротивления использовать полевой транзистор, когда под действием E ρ изменяется сопротивление его канала.

Широкое применение находят аттенюаторы на pin – диодах, обладающие большим диапазоном изменения сопротивления и малой емкостью.

Работа pin – диодов управляется за счет изменения смещения в цепи базы транзистора. При нулевых напряжениях регулировки Д 1 и Д 2 закрыты, а Д 3 открыт (затухание минимально). При E ρ максимальном Д 1 и Д 2 открыты Д 3 закрыт (затухание максимально).

Регулировка K 0 с помощью регулируемой цепи ООС.

ООС вводится в цепь эмиттера транзистора. Глубина обратной связи регулируется за счет изменения емкости варикапа. При увеличении E рег диод сильнее закрывается, при этом уменьшается его емкость, а напряжение ОС увеличивается, уменьшая при этом K 0 .

В последетекторной части приемника способы регулировки K 0 подобны резонансным усилителям. Чаще применяют плавную потенциометрическую регулировку усиления, причем в широкополосных усилителях ее используют обычно в низкоомных цепях. В широкополосных каскадах чаще применяют регулировку усиления с помощью регулируемой ООС.


С помощью регулируемого делителя напряжения осуществляется изменение постоянного напряжения на базе.

Регулировка усиления осуществляется за счет изменения сопротивления переменному току в цепи эмиттера, в результате чего изменяется глубина ООС и усиление каскада.

Напряжение на другой каскад подается через управляемый делитель. Z 2 включает в себя входное сопротивление последующего каскада.

Автоматическая регулировка усиления (АРУ).

АРУ предназначена для поддерживания уровня выходного сигнала приемного устройства или усилителя вблизи некоторого номинального значения при изменении уровня входного сигнала. Использование АРУ необходимо потому, что уровень входного сигнала может меняться достаточно быстро и хаотически, на что невозможно отреагировать с помощью ручной регулировки.

Причин изменения уровня входного сигнала достаточно много:

    Изменение расстояния между источником излучения и приемником;

    Изменение условий распространения радиоволн;

    Перестройка приемника с одной станции на другую;

    Изменение взаимонаправленности приемной и передающей антенн; и т.д.

В радиолокационных приемниках к перечисленным причинам можно добавить флюктуации эффективной отражающей поверхности цели, смена целей с различными эффективными поверхностями, случайные изменения поляризации принимаемых волн.

В идеале выходное напряжение приемника должно оставаться постоянным после достижения некоторого значения выходного напряжения, обеспечивающего нормальную работу оконечного устройства. При этом коэффициент усиления должен изменяться по закону

K=U вых мин /U вх при U вх ≥ U вх мин

Схемы АРУ строятся по двум принципам с регулировкой «назад» и с регулировкой «вперед». Иначе их еще называют обратными и прямыми. Обратные системы АРУ (системы с обратной связью) в них точка съема напряжения, формирующего регулирующее воздействие, расположена дальше от входа приемника, чем точка приложения регулирующего воздействия.

В прямых системах АРУ точка съема напряжения запуска АРУ расположена ближе ко входу приемника, чем точка приложения регулирующего напряжения.

Обратные системы АРУ не могут обеспечить полного постоянства U вых, так как оно является входным для системы АРУ и должно содержать информацию для соответствующего изменения регулирующего воздействия. Кроме того, эта система не может обеспечить одновременно большую глубину регулировки при U вых ≈const и высокое быстродействие по соображениям устойчивости. В тоже время эта система защищает от перегрузки все каскады, расположенные от входа дальше, чем точка приложения регулирующего воздействия.

Прямые системы АРУ принципиально могут обеспечить идеальное регулирование, когда U вых ≈const при U вх ≥ U вх мин и сколь угодно высокое быстродействие. Реально же это не выполнимо, так как степень постоянства выходного напряжения обусловлена конкретными данными элементов цепи АРУ и цепей приемника, подверженных технологическим разбросам параметров, временным и режимным изменениям. При использовании данной системы АРУ от перегрузок защищаются каскады расположенные дальше точки приложения регулирующего воздействия.

Сама система АРУ находится под воздействием сигнала с широким динамическим диапазоном, подвержена перегрузке и должна содержать свои обратные связи. Т акая система сама превращается в отдельный канал приемника с достаточно сложной схемой.

На практике большее применение находят обратные системы АРУ, при этом возможно использовать комбинированные системы АРУ.

Структурная схема обратной АРУ может быть представлена в следующем виде

Напряжение регулировки подается на усилитель со стороны выхода. Детектор АРУ обеспечивает пропорциональность E ρ выходному напряжению, т.е. E ρ =K д U вых. Фильтр АРУ отфильтровывает составляющие частот модуляции. Такую схему называют простой АРУ. До или после детектора в цепях АРУ может включаться усилитель и тогда АРУ считается усиленной.

Структурная схема прямой простой АРУ включает те же элементы.


Функциональная схема комбинированной АРУ включает следующие элементы.

Обратная система АРУ образована детектором Д АРУ1 , фильтром Ф 1 и всеми каскадами основного тракта, расположенными между точкой ввода регулирующего напряжения U ρ1 и выходом блока высокой частоты (БВЧ).

В прямую схему АРУ входят детектор Д АРУ2 , фильтр Ф 2 и усилитель постоянного напряжения У АРУ2 . Регулирующее напряжение U ρ2 вводится в БВЧ и УНЧ, который может и отсутствовать. Фильтры Ф 1 и Ф 2 придают цепям АРУ необходимую инерционность, обусловленную как устойчивость АРУ 1 , так и отсутствием демодуляции амплитудно модулированных сигналов в АРУ 1 и АРУ 2 .

Нет необходимости снижать усиление слабых сигналов (U вх < U вх мин), не обеспечивающих номинального выходного напряжения при максимальном усилении всех каскадов. Для придания цепям АРУ пороговых свойств они запираются принудительным смещением и отпираются тогда, когда напряжение входного сигнала превысит напряжение запирания. Как правило напряжения запирания (задержки) подаются на детекторы или усилители (На схеме E 31 и E 32).

Задержка может вводиться по среднему значению сигнала или по максимальному. В цепи АРУ 1 нет специального усилителя и она является не усиленной системой. АРУ 2 система усиленная, она обладает большей глубиной регулирования и способна обеспечивать меньший динамический диапазон выходного сигнала.

При слабом сигнале на входе приемника и максимальном коэффициенте усиления на его выходе прослушиваются шумы, создаваемые внешними помехами и собственными шумами приемника. Для устранения этого дефекта используются бесшумные системы АРУ.