Общие сведения и параметры радиосигналов. Основные характеристики сигналов. Перечень условных обозначений

В качестве переносчика сообщений используются высокочастотные электромагнитные колебания (радиоволны) соответствующего диапазона, способные распространяться на большие расстояния.

Колебание несущей частоты, излучаемое передатчиком, характеризуется: амплитудой, частотой и начальной фазой. В общем случае оно представляется в виде:

i = I m sin(ω 0 t + Ψ 0) ,

где: i – мгновенное значение тока несущего колебания;

I m – амплитуда тока несущего колебания;

ω 0 – угловая частота несущего колебания;

Ψ 0 – начальная фаза несущего колебания.

Первичные сигналы (передаваемое сообщение, преобразованное в электрическую форму), управляющие работой передатчика, могут изменять один из этих параметров.

Процесс управления параметрами тока высокой частоты с помощью первичного сигнала, называется модуляцией (амплитудной, частотной, фазовой). Для телеграфных видов передач применяется термин «манипуляция».

В радиосвязи, для передачи информации, применяются радиосигналы:

радиотелеграфные;

радиотелефонные;

фототелеграфные;

телекодовые;

сложные виды сигналов.

Радиотелеграфная связь различается: по способу телеграфирования; по способу манипуляции; по применению телеграфных кодов; по способу использования радиоканала.

В зависимости от способа и скорости передачи радиотелеграфные связи делятся на ручные и автоматические. При ручной передаче манипуляция осуществляется телеграфным ключом с использованием кода МОРЗЕ. Скорость передачи (при слуховом приеме) составляет 60–100 знаков в минуту.

При автоматической передаче манипуляция осуществляется электромеханическими устройствами, а прием с помощью печатающих аппаратов. Скорость передачи 900–1200 знаков в минуту.

По способу использования радиоканала телеграфные передачи подразделяются на одноканальные и многоканальные.

По способу манипуляции к наиболее распространенным телеграфным сигналам относятся сигналы с амплитудной манипуляцией (АТ – амплитудный телеграф – А1), с частотной манипуляцией (ЧТ и ДЧТ – частотная телеграфия и двойная частотная телеграфия – F1 и F6), с относительной фазовой манипуляцией (ОФТ – фазовая телеграфия – F9).

По применению телеграфных кодов используются телеграфные системы с кодом МОРЗЕ; стартстопные системы с 5-ти и 6-ти значным кодом и другие.

Телеграфные сигналы представляют собой последовательность прямоугольных импульсов (посылок) одинаковой или различной длительности. Наименьшая по длительности посылка называется элементарной.

Основные параметры телеграфных сигналов: скорость телеграфирования (V) ; частота манипуляции (F) ;ширина спектра (2D f) .



Скорость телеграфирования V равна количеству элементарных посылок, передаваемых за одну секунду, измеряется в бодах. При скорости телеграфирования 1 бод за 1 с передается одна элементарная посылка.

Частота манипуляции F численно равна половине скорости телеграфирования V и измеряется в герцах: F= V/2 .

Амплитудно-манипулированный телеграфный сигнал имеет спектр (рис.2.2.1.1), в котором кроме несущей частоты, содержится бесконечное множество частотных составляющих, расположенных по обе стороны от нее, с интервалами равными частоте манипуляции F. На практике для уверенного воспроизведения телеграфного радиосигнала достаточно принять кроме сигнала несущей частоты по три составляющих спектра, расположенных по обе стороны от несущей. Таким образом, ширина спектра амплитудно-манипулированного телеграфного ВЧ сигнала равна 6F. Чем больше частота манипуляции, тем шире спектр ВЧ телеграфного сигнала.

Рис. 2.2.1.1. Временное и спектральное представление сигнала АТ

При частотной манипуляции ток в антенне по амплитуде не изменяется, а меняется только частота в соответствии с изменением манипулирующего сигнала. Спектр сигнала ЧТ (ДЧТ) (рис. 2.2.1.2) представляет собой как бы спектр двух (четырех) независимых амплитудно-манипулированных колебаний со своими несущими частотами. Разность между частотой «нажатия» и частотой «отжатия» называется разносом частот, обозначается ∆f и может находиться в пределах 50 – 2000 Гц (чаще всего 400 – 900 Гц). Ширина спектра сигнала ЧТ составляет 2∆f+3F.

Рис.2.2.1.2. Временное и спектральное представление сигнала ЧТ

Для повышения пропускной способности радиолинии применяются многоканальные радиотелеграфные системы. В них на одной несущей частоте радиопередатчика, можно передавать одновременно две и более телеграфные программы. Различают системы с частотным уплотнением каналов, с временным разделением каналов и комбинированные системы.

Простейшей двухканальной системой является система двойного частотного телеграфирования (ДЧТ). Сигналы, манипулированные по частоте в системе ДЧТ передаются путем изменения несущей частоты передатчика вследствие одновременного воздействия на него сигналов двух телеграфных аппаратов. При этом используется то, что сигналы двух аппаратов, работающих одновременно, могут иметь лишь четыре сочетания передаваемых посылок. При таком способе в любой момент времени излучается сигнал одной частоты, соответствующий определенному сочетанию манипулированных напряжений. В приемном устройстве имеется дешифратор, с помощью которого формируются телеграфные посылки постоянного напряжения по двум каналам. Уплотнение по частоте заключается в том, что частоты отдельных каналов размещаются на различных участках общего диапазона частот и все каналы передаются одновременно.

При временном разделении каналов радиолиния предоставляется каждому телеграфному аппарату последовательно с помощью распределителей (рис.2.2.1.3).

Рис.2.2.1.3. Многоканальная система с временным разделением каналов

Для передачи радиотелефонных сообщений применяются в основном амплитудно-модулированные и частотно-модулированные высокочастотные сигналы. Модулирующий НЧ сигнал представляет собой совокупность большого количества сигналов разных частот, расположенных в некоторой полосе. Ширина спектра стандартного НЧ телефонного сигнала, как правило, занимает полосу 0,3–3,4 кГц.

Амплитудная модуляция (AM) является наиболее простым и очень распространенным в радиотехнике способом заложения информации в высокочастотное колебание. При AM огибающая амплитуд несущего колебания изменяется по закону, совпадающему с законом изменения передаваемого сообщения, частота же и начальная фаза колебания поддерживаются неизменными. Поэтому для амплитудно-модулированного радиосигнала общее выражение (3.1) можно заменить следующим:

Характер огибающей А(t) определяется видом передаваемого сообщения.

При непрерывном сообщении (рис. 3.1, а) модулированное колебание приобретает вид, показанный на рис. 3.1, б. Огибающая А(t) совпадает по форме с модулирующей функцией, т. е. с передаваемым сообщением s (t). Рисунок 3.1, б построен в предположении, что постоянная составляющая функции s(t) равна нулю (в противоположном случае амплитуда несущего колебания при модуляции может не совпадать с амплитудой немодулированного колебания). Наибольшее изменение A(t) «вниз» не может быть больше . Изменение же «вверх» может быть в принципе и больше .

Основным параметром амплитудно-модулированного колебания является коэффициент модуляции.

Рис. 3.1. Модулирующая функция (а) и амплитудно-модулированное колебание (б)

Определение этого понятия особенно наглядно для тональной модуляции, когда модулирующая функция является гармоническим колебанием:

Огибающую модулированного колебания при этом можно представить в виде

где - частота модуляции; - начальная фаза огибающей; - коэффициент пропорциональности; - амплитуда изменения огибающей (рис. 3.2).

Рис. 3.2. Колебание, модулированное по по амплитуде гармонической функцией

Рис. 3.3. Колебание, модулированное амплитуде импульсной последовательностью

Отношение

называется коэффициентом модуляции.

Таким образом, мгновенное значение модулированного колебания

При неискаженной модуляции амплитуда колебания изменяется в пределах от минимальной до максимальной .

В соответствии с изменением амплитуды изменяется и средняя за период высокой частоты мощность модулированного колебания. Пикам огибающей соответствует мощность, в (1 4 раз большая мощности несущего колебания. Средняя же за период модуляции мощность пропорциональна среднему квадрату амплитуды A(t):

Эта мощность превышает мощность несущего колебания всего лишь в раз. Таким образом, при 100 %-ной модуляции (М = 1) пиковая мощность равна а средняя мощность (через обозначена мощность несущего колебания). Отсюда видно, что обусловленное модуляцией приращение мощности колебания, которое в основном и определяет условия выделения сообщения при приеме, даже при предельной глубине модуляции не превышает половины мощности несущего колебания.

При передаче дискретных сообщений, представляющих собой чередование импульсов и пауз (рис. 3.3, а), модулированное колебание имеет вид последовательности радиоимпульсов, изображенных на рис. 3.3, б. При этом имеется в виду, что фазы высокочастотного заполнения в каждом из импульсов такие же, как и при «нарезании» их из одного непрерывного гармонического колебания.

Только при этом условии показанную на рис. 3.3, б последовательность радиоимпульсов можно трактовать как колебание, модулированное лишь по амплитуде. Если от импульса к импульсу фаза изменяется, то следует говорить о смешанной амплитудно-угловой модуляции.


Контроль толщины эпитаксиального слоя и уровня легирования производят путем непосредственных измерений. Основное требование к методикам кон троля - это скорость измерения и воспроизводимость. В условиях промышленного производства информация о ходе процесса требуется через относительно небольшие интервалы...
(ОСНОВЫ КОНСТРУИРОВАНИЯ И ТЕХНОЛОГИИ ПРОИЗВОДСТВА РАДИОЭЛЕКТРОННЫХ СРЕДСТВ. ИНТЕГРАЛЬНЫЕ СХЕМЫ)
  • ВИДЫ И ИСТОЧНИКИ ПОГРЕШНОСТЕЙ ИЗМЕРЕНИЯ ПАРАМЕТРОВ СИГНАЛОВ В АО ПРОЦЕССОРАХ
    Неидеальность входного тракта Нелинейность амплитудной характеристики Нелинейная зависимость между уровнями сигнала на входе и выходе С’ВЧ-тракта является, со всей очевидностью, источником погрешностей в измерении уровня радиосигнала и источником обогащения спектра сигнала. Точность измерения...
    (АКУСТООПТИЧЕСКИЕ ПРОЦЕССОРЫ. АЛГОРИТМЫ И ПОГРЕШНОСТИ ИЗМЕРЕНИЙ)
  • Измерение параметров импульсных сигналов
    При измерении параметров импульсных сигналов особое значение имеет правильное определение вида и параметров фронтов исследуемого импульса. Основными влияющими факторами на правильное воспроизведение импульсного сигнала являются частотные свойства каната вертикального отклонения осциллографа и переходная...
  • Измерение параметров элементов электрических цепей 7Л. Общие сведения о параметрах элементов
    При эксплуатации телекоммуникационных систем часто возникает необходимость оценки параметров элементов электрических цепей рахтичных радиотехнических устройств. Наиболее распространенными пассивными линейными элементами радиоэлектронных устройств, параметры которых приходится измерять, являются резисторы,...
    (ИЗМЕРЕНИЯ В ТЕЛЕКОММУНИКАЦИОННЫХ СИСТЕМАХ)
  • Спектр электромагнитных излучений техносферы
    Электромагнитное поле представляет собой особую форму материи, посредством которой осуществляется взаимодействие между электрически заряженными частицами. Электромагнитное поле в вакууме характеризуется векторами напряженности электрического поля Е и индукции магнитного поля В, которые определяют силы,...
    (Теоретические основы защиты окружающей среды)
  • Появление спектра взаимообусловленных, взаимодополняемых, разноотраслевых инноваций
    Если в XIX в. и первой половине XX в. не возникало сомнений, что технологические инновации, существующие за пределами какой-либо отрасли промышленности, не имеют на нее никакого влияния, то в настоящее время приходится исходить из представления о том, что основное влияние на организацию и всю отрасль...
    (Управление инновациями)
  • Спектр и тембр звука
    Объективной характеристикой звука является спектр. Но мы подойдем к этому понятию, идя от более традиционного и более ясного понятия "тембр". Оно основывается на понятиях сложного звука и резонанса. Голосовые связки человека можно сравнить со струнами. При колебании струны как единого целого...
    (Современный русский литературный язык)
  • 2.1.1. Детерминированные и случайные сигналы

    Детерминированный сигнал – это сигнал, мгновенное значение которого в любой момент времени можно предсказать с вероятностью равной единице.

    Примером детерминированного сигнала (рис.10) могут быть: последовательности импульсов (форма, амплитуда и положение во времени которых известны), непрерывные сигналы с заданными амплитудно-фазовыми соотношениями.

    Способы задания ММ сигнала: аналитическое выражение (формула), осциллограмма, спектральное представление.

    Пример ММ детерминированного сигнала.

    s(t)=S m ·Sin(w 0 t+j 0)

    Случайный сигнал – сигнал, мгновенное значение которого в любой момент времени заранее неизвестно, а может быть предсказано с некоторой вероятностью, меньше единицы.

    Примером случайного сигнала (рис. 11) может быть напряжение, соответствующее человеческой речи, музыке; последовательность радиоимпульсов на входе радиолокационного приемника; помехи, шумы.

    2.1.2. Сигналы, применяемые в радиоэлектронике

    Непрерывные по величине (уровню) и непрерывные по времени (непрерывные или аналоговые) сигналы – принимают любые значения s(t) и существуют в любой момент в заданном временном интервале (рис. 12).

    Непрерывные по величине и дискретные по времени сигналы заданы при дискретных значениях времени (на счетном множестве точек), величина сигнала s(t) в этих точках принимает любое значение в определенном интервале по оси ординат.

    Термин «дискретный» характеризует способ задания сигнала на оси времени (рис. 13).

    Квантованные по величине и непрерывные по времени сигналы заданы на всей временной оси, но величина s(t) может принимать лишь дискретные (квантованные) значения (рис. 14).

    Квантованные по величине и дискретные по времени (цифровые) сигналы – передаются значения уровней сигнала в цифровой форме (рис. 15).

    2.1.3. Импульсные сигналы

    Импульс – колебание, существующее лишь в пределах конечного отрезка времени. На рис. 16 и 17 представлены видеоимпульс и радиоимпульс.

    Для трапециидального видеоимпульса вводят параметры:

    А – амплитуда;

    t и – длительность видеоимпульса;

    t ф – длительность фронта;

    t ср – длительность среза.

    S р (t)=S в (t)Sin(w 0 t+j 0)

    S в (t) – видеоимпульс – огибающая для радиоимпульса.

    Sin(w 0 t+j 0) – заполнение радиоимпульса.

    2.1.4. Специальные сигналы

    Функция включения (единичная функция (рис. 18) или функция Хевисайда) описывает процесс перехода некоторого физического объекта из «нулевого» в «единичное» состояние, причем этот переход совершается мгновенно.

    Дельта-функция (Функция Дирака) является импульсом, длительность которого стремится к нулю, при этом высота импульса неограниченно возрастает. Принято говорить, что функция сосредоточена в этой точке.

    (2)
    (3)

    По принципу обмена информацией различают три вида радиосвязи:

      симплексная радиосвязь;

      дуплексная радиосвязь;

      полудуплексная радиосвязь.

    По типу аппаратуры, используемой в радиоканале связи, различают следующие виды радиосвязи:

      телефонная;

      телеграфная;

      передачи данных;

      факсимильная;

      телевизионная;

      радиовещания.

    По типу используемых радиоканалов связи различают следующие виды радиосвязи:

      поверхностной волной;

      тропосферная;

      ионосферная;

      метеорная;

      космическая;

      радиорелейная.

    Виды документированной радиосвязи:

      телеграфная связь;

      передача данных;

      факсимильная связь.

    Телеграфная связь – для передачи сообщений в виде буквенно-цифрового текста.

    Передача данных для обмена формализованной информацией между человеком и ЭВМ или между ЭВМ.

    Факсимильная связь для передачи электрическими сигналами неподвижных изображений.

    1 – Телекс – для обмена письменной корреспонденцией между организациями и учреждениями с использованием пишущих машинок с электронной памятью;

    2 – Теле (видео) текст – для получения информации из ЭВМ на мониторы;

    3 – Теле (бюро) факс – для получения используются факсимильные аппараты (либо у пользователей, либо на предприятиях).

    В радиосетях широко используются следующие виды сигналов радиосвязи:

    А1 - AT с манипуляцией незатухающими колебаниями;

    А2 - манипуляция тонально-модулируемыми колебаниями

    АЗН - А1 (В1) - ОМ с 50 % несущей

    АЗА - А1 (В1) - ОМ с 10 % несущей

    АЗУ1 - А1 (Bl) - ОМ без несущей

    3. Особенности распространения радиоволн различных диапазонов.

    Распространение радиоволн мириаметрового, километрового и гектометрового диапазонов.

    Для оценки характера распространения радиоволн того или иного диапазона необходимо знать электрические свойства материальных сред, в которых распространяется радиоволна, т.е. знать и ε А земли и атмосферы.

    Закон полного тока в дифференциальной форме гласит, что

    т.е. изменение во времени потока магнитной индукции обуславливает появление тока проводимости и тока смещения.

    Запишем это уравнение с учетом свойств материальной среды:

    λ < 4 м - диэлектрик

    4 м < λ < 400 м – полупроводник

    λ > 400 м – проводник

    Морская вода:

    λ < 3 м - диэлектрик

    3 cм < λ < 3 м – полупроводник

    λ > 3 м – проводник

    Для волны мириаметрового (CВД):

    λ = 10 ÷ 100 км f = 3 ÷ 30 кГц

    и километрового (ДВ):

    λ = 10 ÷ 1 км f = 30 ÷ 300 кГц

    диапазонов поверхность земли по своим электрическим параметрам приближается к идеальному проводнику, а ионосфера имеет наибольшую проводимость и наименьшую диэлектрическую проницаемость, т.е. близка к проводнику.

    RV диапазонов CДВ и ДВ практически не проникают в землю и ионос­феру, отражаясь от их поверхности и могут распространяться по естест­венным радиотрассам на значительные расстояния без существенной потери энергии поверхностными и пространственными волнами.

    Т.к. длина волныСДВ диапазона соизмерима с расстоянием до нижней границы ионосферы, то понятие простой и поверхностной волны теряет смысл.

    Процесс распространения RVрассматривается как происходящий в сферическом волноводе:

    Внутренняя сторона - земля

    Внешняя сторона (ночью - слой Е, днем - слой Д)

    Волноводный процесс характеризуется незначительными потерями энергии.

    Оптимальные RV – 25 ÷ 30 км

    Критические RV (сильное затухание) - 100 км и более.

    Присущи явления: - замирания, радиоэха.

    Замирания (фединги) в результате интерференции RV, прошедших раз­ные пути и имеющие разные фазы в точке приема.

    Если в противофазе в точке приема поверхностная и пространственная волна, то это фединг.

    Если в противофазе в точке приема пространственные волны, то это дальний фединг.

    Радиоэхо - это повторение сигнала в результате последовательного приема волн, отразившихся от ионосферы разное число раз (ближнее ради­оэхо) или пришедших в точку приема без и после огибания земного шара (дальнее радиоэхо).

    Земная поверхность имеет устойчивые свойства , а места измерения условий ионизации ионосферы мало влияют на распространениеRV СДВ диапазона, то величина энергии радиосигнала мало изменяется в течение суток, года и вэкстремальных условиях.

    В диапазоне км волн хорошо выражены и поверхностная и пространствен­ная волны (и днем, и ночью), особенно на волнах λ> 3 км.

    Поверхностные волны при излучении имеют угол возвышения не более 3-4 градусов, а пространственные волны излучаются под большими углами к земной поверхности.

    Критический угол падения RV км диапазона очень мал (днем на слой Д, а ночью на слой Е). Лучи с углами возвышения, близко к 90 ° отражаются от ионосферы.

    Поверхностные волны км диапазона, благодаря хорошей дифракционной способнос­ти, могут обеспечить связь на расстояние до 1000 км и более. Однако с расстоянием эти волны сильно затухают. (На 1000 км поверхностная вол­на по интенсивности меньше пространственной).

    На очень большие расстояния связь осуществляется только прост­ранственной км волной. В области равной интенсивности поверхностной и пространственной волн наблюдается ближний фединг. Условия расп­ространения км волн практически не зависят от сезона, уровня солнечной активности, слабо зависят от времени суток (ночью уровень сигнала боль­ше).

    Прием в км диапазоне редко ухудшается из-за сильных атмосфер­ных помех (гроза).

    При переходе от КМ (ДВ) км к гектометровому диапазону уменьшается проводимость земли и ионосферы. ε земли и приближается к ε атмос­феры.

    Возрастают потери в земле. Волны глубже проникают в ионосферу. На расстоянии в несколько сот км начинают преобладать пространственные волны, т.к. поверхностные поглощаются землей и затухают.

    На расстоянии примерно 50-200 км поверхностные и пространственные волны равны по интенсивности и может проявляться ближний фединг.

    Замирания частые и глубокие.

    С уменьшением λ глубина замираний возрастает при уменьшении дли­тельности запираний.

    Особенно сильные замирания на λ больше 100 м.

    Средняя длительность замираний колеблется от нескольких секунд (1 сек) до нескольких десятков секунд.

    Условия радиосвязи в гектометровом диапазоне (СВ) зависят от сезона и времени суток, т.к. слой Д исчезает, а слой Е – выше, причем в слое Д большое поглощение.

    Дальность связи ночью больше, чем днем.

    Зимой условия приема улучшаются за счет уменьшения электронной плотности ионосферы и ослабляются в атмосферных полях. В городах при­ем сильно зависит от промышленных помех.

    Распространение RV - декаметрового диапазона (КВ).

    При переходе от СВ к КВ потери в земле сильно увеличиваются (зем­ля является несовершенным диэлектриком), в атмосфере (ионосфе­ре)-уменьшается.

    Поверхностные волны на естественных радиотрассах КВ диапазона имеют малое значение (слабая дифракция, сильное поглощение).