Основные математические функции на алгоритмическом языке. Алгоритмический язык - формальный язык, используемый для записи, реализации или изучения алгоритмов. Основные служебные слова алгоритмического языка. Псевдокод представляет собой систему обозначен

Школьный алгоритмический язык

Алгоритми́ческий язык (также русский алгоритмический язык, РАЯ ) - язык программирования , используемый для записи и изучения алгоритмов . При изучении информатики в школах для изучения основ алгоритмизации применяется т. н. школьный алгоритмический язык (учебный алгоритмический язык ), использующий понятные школьнику слова на русском языке. В отличие от большинства языков программирования, алгоритмический язык не привязан к архитектуре компьютера , не содержит деталей, связанных с устройством машины.

Примеры

Алгоритм на алгоритмическом языке в общем виде записывается в форме:

алг название алгоритма (аргументы и результаты) дано условия применимости алгоритма надо цель выполнения алгоритма нач описание промежуточных величин | последовательность команд (тело алгоритма) кон

В записи алгоритма ключевые слова обычно подчёркивались либо выделялись полужирным шрифтом. Для выделения логических блоков применялись отступы, а парные слова начала и конца блока соединялись вертикальной чертой.

Пример вычисления суммы квадратов:

алг Сумма квадратов (арг цел n, рез цел S) дано | n > 0 надо | S = 1*1 + 2*2 + 3*3 + … + n*n нач цел i | ввод n; S:=0 | нц для i от 1 до n | | S:= S + i * i | кц | вывод "S = ", S кон

Е-практикум

Для подкрепления теоретического изучения программирования по алгоритмическому языку, специалистами мехмата МГУ в 1985 г. был создан редактор-компилятор «Е-практикум» («Е» - в честь Ершова), позволяющий вводить, редактировать и исполнять программы на алгоритмическом языке.

В 1986 г. для «Е-практикума» был выпущен комплект учебных миров (исполнителей): «Робот», «Чертежник»», «Двуног», «Вездеход», которые позволяют просто вводить понятия алгоритма. «Е-практикум» был реализован на компьютерах: Ямаха , Корвет , УКНЦ и получил широкое распространение.

Данный язык программирования постоянно дорабатывался и описание более позднего варианта «Е-практикума» появилось в учебнике 1990 года. Система программирования «КуМир» («Комплект Учебных Миров»), поддерживающая этот учебник, была выпущена в свет предприятием «ИнфоМир» в 1990 году. Язык этой системы также называется «КуМир».

В 1995 году «КуМир» был рекомендован Министерством образования РФ в качестве основного учебного материала по курсу «Основы информатики и вычислительной техники» на основе учебника А. Г. Кушниренко, Г.В.Лебедева и Р.А.Свореня. .

Критика

Однако, следует заметить, что алгоритмический язык при отсутствии деталей, связывающих его с архитектурой компьютера напрямую, тем не менее, относясь к Алголо -подобным языкам, неявно обучает школьников опираться на фон-неймановскую архитектуру машин. (Архитектура фон Неймана является практической реализацией более ранней идеи, имеющей название Машина Тьюринга . Кроме идеи Тьюринга существуют и другие идеи. Популярнейшая из них имеет название Лямбда-исчисление : над ней работал Алонзо Чёрч. Лисп-машина - это архитектура, которая основывается на Лямбда-исчислении.)

Ссылки

  • А. П. Ершов. Алгоритмический язык в школьном курсе основ информатики и вычислительной техники. 07.05.1985
  • Форум по русским языкам программирования и средств разработки

Wikimedia Foundation . 2010 .

Смотреть что такое "Школьный алгоритмический язык" в других словарях:

    Алгоритмический язык формальный язык, используемый для записи, реализации или изучения алгоритмов. Всякий язык программирования является алгоритмическим языком, но не всякий алгоритмический язык пригоден для использования в качестве языка… … Википедия

    У этого термина существуют и другие значения, см. Алгоритмический язык. Учебный алгоритмический язык формальный язык, используемый для записи, реализации и изучения алгоритмов. В отличие от большинства языков программирования, не привязан к … Википедия

    У этого термина существуют и другие значения, см. Дракон (значения). Пример блок схемы алгоритма на языке ДРАКОН дракон схемы ДРАКОН (Дружелюбный Русский Алгоритмический язык, Который Обеспечивает Наглядность) визуальный… … Википедия

    Учебный язык программирования язык программирования, предназначенный для обучения. В качестве таковых разрабатывались такие языки как BASIC и Паскаль. Из разработанного для обучения языка ABC вырос Python. Популярным языком,… … Википедия

    Эта статья предлагается к удалению. Пояснение причин и соответствующее обсуждение вы можете найти на странице Википедия:К удалению/28 сентября 2012. Пока процесс обсуждения не завершён, статью мож … Википедия

    Алгоритмический язык (также русский алгоритмический язык, РАЯ) язык программирования, используемый для записи и изучения алгоритмов. При изучении информатики в школах для изучения основ алгоритмизации применяется т. н. школьный алгоритмический… … Википедия

    У этого термина существуют и другие значения, см. Кумир. КуМир … Википедия

    Edumandriva … Википедия

    - (Комплект учебных Миров или Миры Кушниренко) система программирования, предназначенная для поддержки начальных курсов информатики и программирования в средней и высшей школе. Основана на методике, разработанной во второй половине 1980 х годов… … Википедия

Книги

  • Программирование на алгоритмическом языке КуМир под редакцией А Г Кушниренко , Анеликова Л., Гусева О.. Данное пособие предназначено учителям и учащимся для поддержки начальных курсов информатики и программирования в средней, старшей и высшей школе. . В нем рассматриваются основные этапы и…


Алгоритм. Школьный алгоритмический язык.

Алгоритм - точное и понятное предписание исполнителю совершить последовательность действий, направленных на решение поставленной задачи.

  • Название "алгоритм" произошло от латинской формы имени среднеазиатского математика аль-Хорезми - Algorithmi. Алгоритм - одно из основных понятий информатики и математики.


Исполнитель алгоритма - это некоторая абстрактная или реальная (техническая, биологическая или биотехническая) система, способная выполнить действия, предписываемые алгоритмом.

  • Исполнителя хаpактеpизуют:

  • среда;

  • элементарные действия;

  • система команд;

  • отказы.

  • Среда (или обстановка) - это "место обитания" исполнителя.

  • Система команд . Каждый исполнитель может выполнять команды только из некоторого строго заданного списка - системы команд исполнителя. Для каждой команды должны быть заданы условия применимости (в каких состояниях среды может быть выполнена команда) и описаны результаты выполнения команды.

  • После вызова команды исполнитель совершает соответствующее элементарное действие .

  • Отказы исполнителя возникают, если команда вызывается при недопустимом для нее состоянии среды.


Основные свойства алгоритмов следующие:

  • Понятность для исполнителя - т.е. исполнитель алгоритма должен знать, как его выполнять.

  • Дискретность (прерывность, раздельность) - т.е. алгоритм должен представлять процесс решения задачи как последовательное выполнение простых (или ранее определенных) шагов (этапов).

  • Определенность - т.е. каждое правило алгоритма должно быть четким, однозначным и не оставлять места для произвола. Благодаря этому свойству выполнение алгоритма носит механический хаpактеp и не требует никаких дополнительных указаний или сведений о решаемой задаче.

  • Результативность (или конечность). Это свойство состоит в том, что алгоритм должен приводить к решению задачи за конечное число шагов.

  • Массовость . Это означает, что алгоритм решения задачи pазpабатывается в общем виде, т.е. он должен быть применим для некоторого класса задач, различающихся лишь исходными данными. При этом исходные данные могут выбираться из некоторой области, которая называется областью применимости алгоритма.


Формы представления алгоритмов:

  • словесная (записи на естественном языке);

  • графическая (изображения из графических символов);

  • псевдокоды (полуформализованные описания алгоритмов на условном алгоритмическом языке, включающие в себя как элементы языка программирования, так и фразы естественного языка, общепринятые математические обозначения и др.);

  • программная (тексты на языках программирования).


Словесный способ записи алгоритмов представляет собой описание последовательных этапов обработки данных. Алгоритм задается в произвольном изложении на естественном языке.

  • Например. Записать алгоритм нахождения наибольшего общего делителя (НОД) двух натуральных чисел. Алгоритм может быть следующим:

  • задать два числа;

  • если числа равны, то взять любое из них в качестве ответа и остановиться, в противном случае продолжить выполнение алгоритма;

  • определить большее из чисел;

  • заменить большее из чисел разностью большего и меньшего из чисел;

  • повторить алгоритм с шага 2.


При графическом представлении алгоритм изображается в виде последовательности связанных между собой функциональных блоков, каждый из которых соответствует выполнению одного или нескольких действий.

  • Такое графическое представление называется схемой алгоритма или блок-схемой .


Псевдокод представляет собой систему обозначений и правил, предназначенную для единообразной записи алгоритмов.

    В псевдокоде не приняты строгие синтаксические правила для записи команд, присущие формальным языкам, что облегчает запись алгоритма на стадии его проектирования и дает возможность использовать более широкий набор команд, рассчитанный на абстрактного исполнителя. Однако в псевдокоде обычно имеются некоторые конструкции, присущие формальным языкам, что облегчает переход от записи на псевдокоде к записи алгоритма на формальном языке. В частности, в псевдокоде, так же, как и в формальных языках, есть служебные слова , смысл которых определен раз и навсегда. Они выделяются в печатном тексте жирным шрифтом, а в рукописном тексте подчеркиваются. Единого или формального определения псевдокода не существует, поэтому возможны различные псевдокоды, отличающиеся набором служебных слов и основных (базовых) конструкций.

  • Примером псевдокода является школьный алгоритмический язык в русской нотации (школьный АЯ),


Основные служебные слова


Общий вид алгоритма:

  • алг название алгоритма (аргументы и результаты)

  • дано условия применимости алгоритма

  • надо цель выполнения алгоритма

  • нач описание промежуточных величин

  • последовательность команд (тело

  • алгоритма)


Часть алгоритма от слова алг до слова нач называется заголовком нач и кон - телом алгоритма.

  • Часть алгоритма от слова алг до слова нач называется заголовком , а часть, заключенная между словами нач и кон - телом алгоритма.

  • В предложении алг после названия алгоритма в круглых скобках указываются характеристики (арг, рез ) и тип значения (цел, вещ, сим, лит или лог) всех входных (аргументы ) и выходных (результаты ) переменных . При описании массивов (таблиц) используется служебное слово таб , дополненное граничными парами по каждому индексу элементов массива.


Команды школьного АЯ

  • Оператор присваивания . Служит для вычисления выражений и присваивания их значений переменным. Общий вид: А:= В , где знак ":=" означает команду заменить прежнее значение переменной, стоящей в левой части , на вычисленное значение выражения, стоящего в правой части .

  • Например, a:=(b+c)*sin(Pi/4); i:=i+1.

  • Для ввода и вывода данных используют команды

  • ввод имена переменных

  • вывод имена переменных, выражения, тексты.

  • Для ветвления применяют команды если и выбор , для организации циклов - команды для и пока


Пример записи алгоритма на школьном АЯ

  • алг Сумма квадратов (арг цел n, рез цел S)

  • дано | n > 0

  • надо | S = 1*1 + 2*2 + 3*3 + ... + n*n

  • нач цел i

  • ввод n; S:=0

  • нц для i от 1 до n S:=S+i*i

  • вывод "S = ", S


Алгоритмы можно представлять как некоторые структуры, состоящие из отдельных базовых (т.е.основных) элементов.

  • 1. Базовая структура следование .


2. Базовая структура ветвление .

  • Структура ветвление существует в четырех основных вариантах:

  • если-то;

  • если-то-иначе;

  • выбор;

  • выбор-иначе.


2. Базовая структура ветвление .


2. Базовая структура ветвление .


3. Базовая структура цикл .

  • Обеспечивает многократное выполнение некоторой совокупности действий, которая называется телом цикла .


Какие понятия используют алгоритмические языки

  • Понятие языка определяется во взаимодействии синтаксических и семантических правил. Синтаксические правила показывают, как образуется данное понятие из других понятий и букв алфавита, а семантические правила определяют свойства данного понятия


Основными понятиями в алгоритмических языках обычно являются следующие.

  • Имена (идентификаторы) - употpебляются для обозначения объектов пpогpаммы (пеpеменных, массивов, функций и дp.).

  • Опеpации . Типы операций:

  • аpифметические опеpации + , - , * , / и дp. ;

  • логические опеpации и, или, не ;

  • опеpации отношения , = , = , ;

  • опеpация сцепки (иначе, "присоединения", "конкатенации") символьных значений дpуг с другом с образованием одной длинной строки; изображается знаком "+".

  • Данные - величины, обpабатываемые пpогpаммой . Имеется тpи основных вида данных: константы, пеpеменные и массивы .

  • Константы - это данные, которые зафиксированы в тексте программы и не изменяются в процессе ее выполнения.

  • Пpимеpы констант:

    • числовые 7.5, 12;
    • логические да (истина), нет (ложь);
    • символьные "А", "+";
    • литеpные "abcde", "информатика", "" (пустая строка).
  • Пеpеменные обозначаются именами и могут изменять свои значения в ходе выполнения пpогpаммы. Пеpеменные бывают целые, вещественные, логические, символьные и литерные .

  • Массивы - последовательности однотипных элементов, число которых фиксировано и которым присвоено одно имя. Положение элемента в массиве однозначно определяется его индексами (одним, в случае одномерного массива, или несколькими, если массив многомерный). Иногда массивы называют таблицами.


Выpажения

  • Выpажения - пpедназначаются для выполнения необходимых вычислений, состоят из констант, пеpеменных, указателей функций (напpимеp, exp(x)), объединенных знаками опеpаций.

  • Выражения записываются в виде линейных последовательностей символов (без подстрочных и надстрочных символов, "многоэтажных" дробей и т.д.), что позволяет вводить их в компьютер, последовательно нажимая на соответствующие клавиши клавиатуры.

  • Различают выражения арифметические, логические и строковые.

  • Арифметические выражения служат для определения одного числового значения . Например, (1+sin(x))/2. Значение этого выражения при x=0 равно 0.5, а при x=p/2 - единице.

  • Логические выражения описывают некоторые условия, которые могут удовлетворяться или не удовлетворяться . Таким образом, логическое выражение может принимать только два значения - "истина" или "ложь" (да или нет ). Рассмотрим в качестве примера логическое выражение x*x + y*y "истина", а при x=2, y=2, r=1 - "ложь" .

  • Значения строковых (литерных) выражений - текcты . В них могут входить литерные константы, литерные переменные и литерные функции, разделенные знаком операции сцепки. Например, А + В означает присоединение строки В к концу строки А. Если А = "куст " , а В = "зеленый" , то значение выражения А+В есть "куст зеленый" .

  • Операторы (команды). Оператор - это наиболее крупное и содержательное понятие языка: каждый оператор представляет собой законченную фразу языка и определяет некоторый вполне законченный этап обработки данных. В состав опеpатоpов входят:

  • ключевые слова;

  • данные;

  • выpажения и т.д.

  • Операторы подpазделяются на исполняемые и неисполняемые. Неисполняемые опеpатоpы пpедназначены для описания данных и стpуктуpы пpогpаммы, а исполняемые - для выполнения pазличных действий (напpимеp, опеpатоp пpисваивания, опеpатоpы ввода и вывода, условный оператор, операторы цикла, оператор процедуры и дp.).


Вычисления часто употребляемых функций осуществляются посредством подпрограмм, называемых стандартными функциями , которые заранее запрограммированы и встроены в транслятор языка.


Таблица стандартных функций школьного алгоритмического языка


  • В качестве аргументов функций можно использовать константы, переменные и выражения. Например: sin(3.05) min(a, 5)

  • sin(x) min(a, b)

  • sin(2*y+t/2) min(a+b, a*b)

  • sin((exp(x)+1)**2)

  • min(min(a,b),

  • min(c,d))


Арифметические выражения записываются по следующим правилам:

  • Нельзя опускать знак умножения между сомножителями и ставить рядом два знака операций.

  • Индексы элементов массивов записываются в квадратных (школьный АЯ, Pascal) или круглых (Basic) скобках.

  • Для обозначения переменных используются буквы латинского алфавита.

  • Операции выполняются в порядке старшинства : сначала вычисление функций, затем возведение в степень, потом умножение и деление и в последнюю очередь - сложение и вычитание.

  • Операции одного старшинства выполняются слева направо . Например, a/b*c соответствует a/b*c. Однако, в школьном АЯ есть одно исключение из этого правила: операции возведения в степень выполняются справа налево. Так, выражение 2**(3**2) в школьном АЯ вычисляется как 2**(3**2) = 512. В языке QBasic аналогичное выражение 2^3^2 вычислясляется как (2^3)^2 = 64. А в языке Pascal вообще не предусмотрена операция возведения в степень, в Pascal x^y записывается как exp(y*ln(x)), а x^y^z как exp(exp(z*ln(y))*ln(x)).


Примеры записи арифметических выражений


Типичные ошибки в записи выражений:

  • a+sin x

  • (a+b)/c**3



Примеры записи логических выражений, истинных при выполнении указанных условий.


Запишите по правилам алгоритмического языка выражения:


  • a+b/c+1;

  • a**b**c/2;

  • a/b/c/d*p*q;

  • 4/3*3.14*r**3;

  • d*c/2/R+a**3;


Алгоритмический язык программирования - формальный язык, используемый для записи, реализации и изучения алгоритмов. В отличие от большинства языков программирования, алгоритмический язык не привязан к архитектуре компьютера, не содержит деталей, связанных с устройством машины.

Для изучения основ алгоритмизации применяется так называемый Русский алгоритмический язык (школьный алгоритмический язык), использующий понятные школьнику слова на русском языке.

Алголо-подобный алгоритмический язык с русским синтаксисом был введён в употребление академиком А. П. Ершовым в середине 1980-х годов, в качестве основы для «безмашинного» курса информатики.

Основные служебные слова алгоритмического языка

Описание алгоритма

  • алг (алгоритм)
  • арг (аргумент)
  • рез (результат)
  • нач (начало) — начало алгоритма
  • кон (конец) — конец алгоритма
  • дано — исходные данные в произвольной форме
  • надо — цель алгоритма

Типы данных:

  • цел (целый)
  • вещ (вещественный)
  • сим (символьный)
  • лит (литера) — строка
  • лог (логический)
  • таб (таблица) — для обозначения массива
  • длин (длина) — количество элементов массива

Обозначение условий

  • если
  • иначе
  • выбор
  • знач

Обозначение циклов

  • нц (начало цикла)
  • кц (конец цикла)
  • пока

Логические функции и значения для составления выражений

Ввод-вывод

  • ввод
  • вывод

Общий вид алгоритма

1
2
3
4
5
6

алг название алгоритма (аргументы и результаты)
| дано условия применимости алгоритма
| надо цель выполнения алгоритма
нач описание промежуточных величин
| последовательность команд (тело алгоритма)
кон

Часть алгоритма от слова алг до слова нач называется заголовком , а часть, заключенная между словами нач и кон - телом алгоритма .

В предложении алг после названия алгоритма в круглых скобках указываются характеристики (арг , рез ) и тип значения (цел , вещ , сим , лит или лог ) всех входных (аргументы) и выходных (результаты) переменных. При описании массивов (таблиц) используется служебное слово таб , дополненное граничными парами по каждому индексу элементов массива.

В записи алгоритма ключевые слова обычно подчёркиваются либо выделяются полужирным шрифтом. Для выделения логических блоков применяются отступы, а парные слова начала и конца блока соединяются вертикальной чертой.

Основные алгоритмические структуры

Подробное описание основных алгоритмических структур приведено в этой статье . Ниже приводятся шаблоны составления этих структур на алгоритмическом языке.
Неполная развилка

| если условие
| | то действия
| всё

Полная развилка

1
2
3
4
5

| если условие
| | то действия 1
| | иначе действия 2
| всё

Ветвление

1
2
3
4
5
6
7
8

| выбор параметр
| | при знач значение 1
| | | действия 1
| | при знач значение 2
| | | действия 2
| | иначе
| | | действия по умолчанию
| всё

Цикл с предусловием

| нц пока условие
| | действия
| кц

Цикл с постусловием

Министерство образования Российской Федерации Пермский Государственный технический университет

Кафедра информационных технологий и автоматизированных систем

Викентьева О. Л.

Конспект лекций по курсу «Алгоритмические языки и программирование» (Основы языка С++, I семестр)

Введение

В первом семестре рассматриваются основные конструкции языка Си и базовая технология программирования (структурное программирование).

Структурное программирование – это технология создания программ, позволяющая путем соблюдения определенных правил уменьшить время разработки и количество ошибок, а также облегчить возможность модификации программы.

1.1. Алгоритм и программа

Алгоритм – точное предписание, определяющий вычислительный процесс, идущий от изменяемых начальных данных к конечному результату, т. е. это рецепт достижения ка- кой-либо цели.

Совокупность средств и правил для представления алгоритма в виде пригодном для выполнения вычислительной машиной называется языком программирования, алгоритм, записанный на этом языке, называется программой.

Сначала всегда разрабатывается алгоритм действий, а потом он записывается на одном из языков программирования. Текст программы обрабатывается специальными служебными программами – трансляторами. Языки программирования – это искусственные языки. От естественных языков они отличаются ограниченным числом «слов» и очень строгими правилами записи команд (операторов). Совокупность этих требований образует синтаксис языка программирования, а смысл каждой конструкции – его семантику.

1.2.Свойства алгоритма

1. Массовость: алгоритм должен применяться не к одной задаче, а к целому классу подобных задач (алгоритм для решения квадратного уравнения должен решать не одно уравнение, а все квадратные уравнения).

2. Результативность: алгоритм должен приводить к получению результата за конкретное число шагов (при делении 1 на 3 получается периодическая дробь 0,3333(3), для достижения конечного результата надо оговорить точность получения этой дроби, например, до 4 знака после запятой).

3. Определенность (детерминированность) – каждое действие алгоритма должно быть понятно его исполнителю (инструкция к бытовому прибору на японском языке для человека не владеющего японским языком не является алгоритмом, т.к не обладает свойством детерминированности).

4. Дискретность – процесс должен быть описан с помощью неделимых

операций, выполняемых на каждом шаге (т. е. шаги нельзя разделить на более мелкие шаги).

Алгоритмы можно представить в следующих формах:

1) словесное описание алгоритма.

2) графическое описание алгоритма.

3) с помощью алгоритмического языка программирования

1.2. Компиляторы и интерпретаторы

С помощью языка программирования создается текст, описывающий ранее составленный алгоритм. Чтобы получить работающую программу, надо этот текст перевести в последовательность команд процессора, что выполняется при помощи специальных программ, которые называются трансляторами. Трансляторы бывают двух видов: компиляторы и интерпретаторы. Компилятор транслирует текст исходного модуля в машинный код, который называется объектным модулем за один непрерывный процесс. При этом сначала он просматривает исходный текст программы в поисках синтаксических ошибок. Интерпретатор выполняет исходный модуль программы в режиме оператор за оператором, по

ходу работы, переводя каждый оператор на машинный язык.

1.3.Языки программирования

Разные типы процессоров имеют разный набор команд. Если язык программирования ориентирован на конкретный тип процессора и учитывает его особенности, то он называется языком программирования низкого уровня. Языком самого низкого уровня является язык ассемблера, который просто представляет каждую команду машинного кода в виде специальных символьных обозначений, которые называются мнемониками. С помощью языков низкого уровня создаются очень эффективные и компактные программы, т.к разработчик получает доступ ко всем возможностям процессора. Т.к. наборы инструкций для разных моделей процессоров тоже разные, то каждой модели процессора соответствует свой язык ассемблера, и написанная на нем программа может быть использована только в этой среде. Подобные языки применяют для написания небольших системных приложений, драйверов устройств и т. п..

Языки программирования высокого уровня не учитывают особенности конкретных компьютерных архитектур, поэтому создаваемые программы на уровне исходных текстов легко переносятся на другие платформы, если для них созданы соответствующие трансляторы. Разработка программ на языках высокого уровня гораздо проще, чем на машинных языках.

Языками высокого уровня являются:

1. Фортран – первый компилируемый язык, созданный в 50-е годы 20 века. В нем были реализован ряд важнейших понятий программирования. Для этого языка было создано огромное количество библиотек, начиная от статистических комплексов и заканчивая управлением спутниками, поэтому он продолжает использоваться во многих организациях.

2. Кобол – компилируемый язык для экономических расчетов и решения бизнес-задач, разработанный в начале 60-х годов. В Коболе были реализованы очень мощные средства работы с большими объемами данных, хранящихся на внешних носителях.

3. Паскаль – создан в конце 70-х годов швейцарским математиком Никлаусом Виртом специально для обучению программированию. Он позволяет выработать алгоритмическое мышление, строить короткую, хорошо читаемую программу, демонстрировать основные приемы алгоритмизации, он также хорошо подходит для реализации крупных проектов.

4. Бейсик – создавался в 60-х годах также для обучения программированию. Для него имеются и компиляторы и интерпретаторы, является одним из самых популярных языков программирования.

5. Си – был создан в 70- е годы первоначально не рассматривался как массовый язык программирования. Он планировался для замены ассемблера, чтобы иметь возможность создавать такие же эффективные и короткие программы, но не зависеть от конкретного процессора. Он во многом похож на Паскаль и имеет дополнительные возможности для работы с памятью. На нем написано много прикладных и системных программ, а также операционная система Unix.

6. Си++ - объектно-ориентированное расширение языка Си, созданное Бьярном Страуструпом в 1980г.

7. Java – язык, который был создан компанией Sun в начале 90-х годов на основе Си++. Он призван упростить разработку приложений на СИ++ путем исключения из него низкоуровневых возможностей. Главная особенность языка – это то, что он компилируется не в машинный код, а в платформно-независимый байт-код (каждая команда занимает один байт). Этот код может выполняться с помощью интерпретатора – виртуальной Java-машины (JVM).

2.Структура программы на Си++

Программа на языке Си имеет следующую структуру: #директивы препроцессора

. . . . . . . . .

#директивы препроцессора функция а ()

операторы функция в ()

операторы

void main () //функция, с которой начинается выполнение программы операторы

описания

присваивания

функция пустой оператор

составной

перехода

Директивы препроцессора - управляют преобразованием текста программы до ее компиляции. Исходная программа, подготовленная на СИ в виде текстового файла, проходит 3 этапа обработки:

1) препроцессорное преобразование текста;

2) компиляция;

3) компоновка (редактирование связей или сборка).

После этих трех этапов формируется исполняемый код программы. Задача препро-

цессора - преобразование текста программы до ее компиляции. Правила препроцессорной обработки определяет программист с помощью директив препроцессора. Директива начинается с #. Например,

1) #define - указывает правила замены в тексте. #define ZERO 0.0

Означает, что каждое использование в программе имени ZERO будет заменяться

2) #include< имя заголовочного файла> - предназначена для включения в текст программы текста из каталога «Заголовочных файлов», поставляемых вместе со стандартными библиотеками. Каждая библиотечная функция Си имеет соответствующее описание в одном из заголовочных файлов. Список заголовочных файлов определен стандартом языка. Употребление директивы include не подключает соответствующую стандартную биб-

лиотеку, а только позволяют вставить в текст программы описания из указанного заголовочного файла. Подключение кодов библиотеки осуществляется на этапе компоновки, т. е. после компиляции. Хотя в заголовочных файлах содержатся все описания стандартных функций, в код программы включаются только те функции, которые используются в программе.

После выполнения препроцессорной обработки в тексте программы не остается ни одной препроцессорной директивы.

Программа представляет собой набор описаний и определений, и состоит из набора функций. Среди этих функций всегда должна быть функция с именем main. Без нее программа не может быть выполнена. Перед именем функции помещаются сведения о типе возвращаемого функцией значения (тип результата). Если функция ничего не возвращает, то указывается тип void: void main (). Каждая функция, в том числе и main должна иметь набор параметров, он может быть пустым, тогда в скобках указывается (void).

За заголовком функции размещается тело функции. Тело функции - это последовательность определений, описаний и исполняемых операторов, заключенных в фигурные скобки. Каждое определение, описание или оператор заканчивается точкой с запятой.

Определения - вводят объекты (объект - это именованная область памяти, частный случай объекта - переменная), необходимые для представления в программе обрабатываемых данных. Примером являются

int y = 10 ; //именованная константа float x ; //переменная

Описания - уведомляют компилятор о свойствах и именах объектов и функций, описанных в других частях программы.

Операторы - определяют действия программы на каждом шаге ее исполне-

Пример программы на Си:

#include //препроцессорная директива

Контрольные вопросы

1. Из каких частей состоит программа на С++?

2. Чем определение отличается от объявления?

3. Перечислить этапы создания исполняемой программы на языке С++.

4. Что такое препроцессор?

5. Что такое директива препроцессора? Привести примеры директив препроцессора.

6. Составить программу, которая печатает текст «Моя первая программа на С++»

2. Базовые средства языка СИ++ 2.1.Состав языка

В тексте на любом естественном языке можно выделить четыре основных элемента: символы, слова, словосочетания и предложения. Алгоритмический язык также содержит такие элементы, только слова называют лексемами (элементарными конструкциями), словосочетания – выражениями, предложения – операторами. Лексемы образуются из символов, выражения из лексем и символов, операторы из символов выражений и лексем (Рис. 1.1)

Рис. 1.1. Состав алгоритмического языка Таким образом, элементами алгоритмического языка являются:

Идентификаторы – имена объектов СИ-программ. В идентификаторе могут быть использованы латинские буквы, цифры и знак подчеркивания. Прописные и строчные буквы различаются, например, PROG1, prog1 и Prog1 – три различных идентификатора. Первым символом должна быть буква или знак подчеркивания (но не цифра). Пробелы в идентификаторах не допускаются.

Ключевые (зарезервированные) слова – это слова, которые имеют специальное значение для компилятора. Их нельзя использовать в качестве идентификаторов.

- Знаки операций – это один или несколько символов, определяющих действие над операндами. Операции делятся на унарные, бинарные и тернарную по количеству участвующих в этой операции операндов.

Константы – это неизменяемые величины. Существуют целые, вещественные, символьные и строковые константы. Компилятор выделяет константу в качестве лексемы (элементарной конструкции) и относит ее к одному из типов по ее внешнему виду.

Разделители – скобки, точка, запятая пробельные символы.

2.1.1. Константы в Си++

Константа – это лексема, представляющая изображение фиксированного числового, строкового или символьного значения.

Константы делятся на 5 групп:

Целые;

- вещественные (с плавающей точкой);

Перечислимые;

Символьные;

Строковые.

Компилятор выделяет лексему и относит ее к той или другой группе, а затем вну-

три группы к определенному типу по ее форме записи в тексте программы и по числовому значению.

Целые константы могут быть десятичными, восьмеричными и шестнадцатеричными. Десятичная константа определяется как последовательность десятичных цифр, начинающаяся не с 0, если это число не 0 (примеры: 8, 0, 192345). Восьмеричная константа – это константа, которая всегда начинается с 0. За 0 следуют восьмеричные цифры (примеры: 016 – десятичное значение 14, 01). Шестнадцатеричные константы – последовательность шестнадцатеричных цифр, которым предшествуют символы 0х или 0Х (примеры: 0хА, 0Х00F).

В зависимости от значения целой константы компилятор по-разному представит ее

в памяти компьютера (т. е. компилятор припишет константе соответствующий тип данных).

Вещественные константы имеют другую форму внутреннего представления в памяти компьютера. Компилятор распознает такие константы по их виду. Вещественные константы могут иметь две формы представления: с фиксированной точкой и с плавающей точкой. Вид константы с фиксированной точкой:[цифры].[цифры] (примеры: 5.7, . 0001, 41.).Вид константы с плавающей точкой: [цифры][.][цифры]E|e[+|-][цифры] (приме- ры:0.5е5, .11е-5, 5Е3). В записи вещественных констант может опускаться либо целая, либо дробная части, либо десятичная точка, либо признак экспоненты с показателем степени.

Перечислимые константы вводятся с помощью ключевого слова enum. Это обычные целые константы, которым приписаны уникальны и удобные для использования обозначения. Примеры: enum { one=1, two=2, three=3,four=4};

enum {zero,one,two,three} – если в определении перечислимых констант опустить знаки = и числовые значения, то значения будут приписываться по умолчанию. При этом самый левый идентификатор получит значение 0, а каждый последующий будет увеличиваться на 1.

enum { ten=10, three=3, four, five, six};

enum {Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Satur-

Символьные константы – это один или два символа, заключенные в апострофы. Символьные константы, состоящие из одного символа, имеют тип char и занимают в памяти один байт, символьные константы, состоящие из двух символов, имеют тип int и занимают два байта. Последовательности, начинающиеся со знака \ , называются управляющими, они используются:

- Для представления символов, не имеющих графического отображения, например:

\a – звуковой сигнал,

\b – возврат на один шаг, \n – перевод строки,

\t – горизонтальная табуляция.

- Для представления символов: \ , ’ , ? , ” (\\, \’ ,\? ,\”).

- Для представления символов с помощью шестнадцатеричных или восьмеричных кодов (\073, \0хF5).

Строковая константа – это последовательность символов, заключенная в кавычки.

Внутри строк также могут использоваться управляющие символы. Например: “\nНовая строка”,

“\n\”Алгоритмические языки программирования высокого уровня \”” .

2.2. Типы данных в Си++

Данные отображают в программе окружающий мир. Цель программы состоит в обработке данных. Данные различных типов хранятся и обрабатываются по-разному. Тип данных определяет:

1) внутреннее представление данных в памяти компьютера;

2) множество значений, которые могут принимать величины этого типа;

3) операции и функции, которые можно применять к данным этого типа.

В зависимости от требований задания программист выбирает тип для объектов программы. Типы Си++ можно разделить на простые и составные. К простым типам относят типы, которые характеризуются одним значением. В Си++ определено 6 простых типов данных:

int (целый)

char (символьный)

wchar_t (расширенный символьный) bool (логический) float(вещественный)

double (вещественный с двойной точностью)

Существует 4 спецификатора типа, уточняющих внутреннее представление и диапазон стандартных типов

short (короткий) long (длинный) signed (знаковый)

unsigned (беззнаковый)

2.2.1. Тип int

Значениями этого типа являются целые числа.

Размер типа int не определяется стандартом, а зависит от компьютера и компилятора. Для 16-разрядного процессора под него отводится 2 байта, для 32-разрядного – 4 байта.

Если перед int стоит спецификатор short, то под число отводится 2 байта, а если спецификатор long, то 4 байта. От количества отводимой под объект памяти зависит множество допустимых значений, которые может принимать объект:

short int - занимает 2 байта, следовательно, имеет диапазон –32768 ..+32767;

long int – занимает 4 байта, следовательно, имеет диапазон –2 147 483 648..+2 147 483 647

Тип int совпадает с типом short int на 16-разрядных ПК и с типом long int на 32разрядных ПК.

Модификаторы signed и unsigned также влияют на множество допустимых значений, которые может принимать объект:

unsigned short int - занимает 2 байта, следовательно, имеет диапазон 0 ..65536; unsigned long int – занимает 4 байта, следовательно, имеет диапазон 0..+4 294 967

2.2.2. Тип char

Значениями этого типа являются элементы конечного упорядоченного множества символов. Каждому символу ставится в соответствие число, которое называется кодом символа. Под величину символьного типа отводится 1 байт. Тип char может использоваться со спецификаторами signed и unsigned. В данных типа signed char можно хранить значения в диапазоне от –128 до 127. При использовании типа unsigned char значения могут находиться в диапазоне от 0 до 255. Для кодировки используется код ASCII(American Standard Code foe International Interchange). Символы с кодами от 0 до 31 относятся к служебным и имеют самостоятельное значение только в операторах ввода-вывода.

Величины типа char также применяются для хранения чисел из указанных диапазо-

2.2.3. Тип wchar_t

Предназначен для работы с набором символов, для кодировки которых недостаточно 1 байта, например Unicode. Размер этого типа, как правило, соответствует типу short. Строковые константы такого типа записываются с префиксом L: L“String #1”.

2.2.4. Тип bool

Тип bool называется логическим. Его величины могут принимать значения true и false. Внутренняя форма представления false – 0, любое другое значение интерпретируется как true.

2.2.5. Типы с плавающей точкой.

Внутреннее представление вещественного числа состоит из 2 частей: мантиссы и порядка. В IBM-совместимых ПК величины типа float занимают 4 байта, из которых один разряд отводится под знак мантиссы, 8 разрядов под порядок и 24 – под мантиссу.

Величины типы double занимают 8 байтов, под порядок и мантиссу отводятся 11 и 52 разряда соответственно. Длина мантиссы определяет точность числа, а длина порядка его диапазон.

Если перед именем типа double стоит спецификатор long, то под величину отводится байтов.

2.2.6. Тип void

К основным типам также относится тип void Множество значений этого типа – пу-

2.3. Переменные

Переменная в СИ++ - именованная область памяти, в которой хранятся данные определенного типа. У переменной есть имя и значение. Имя служит для обращения к области памяти, в которой хранится значение. Перед использованием любая переменная должна быть описана. Примеры:

Общий вид оператора описания:

[класс памяти]тип имя [инициализатор];

Класс памяти может принимать значения: auto, extern, static, register. Класс памяти определяет время жизни и область видимости переменной. Если класс памяти не указан явно, то компилятор определяет его исходя из контекста объявления. Время жизни может быть постоянным – в течение выполнения программы или временным – в течение блока. Область видимости – часть текста программы, из которой допустим обычный доступ к переменной. Обычно область видимости совпадает с областью действия. Кроме того случая, когда во внутреннем блоке существует переменная с таким же именем.

Const – показывает, что эту переменную нельзя изменять (именованная константа). При описании можно присвоить переменной начальное значение (инициализация). Классы памяти:

auto –автоматическая локальная переменная. Спецификатор auto может быть задан только при определении объектов блока, например, в теле функции. Этим переменным память выделяется при входе в блок и освобождается при выходе из него. Вне блока такие переменные не существуют.

extern – глобальная переменная, она находится в другом месте программы (в другом файле или долее по тексту). Используется для создания переменных, которые доступны во всех файлах программы.

static – статическая переменная, она существует только в пределах того файла, где определена переменная.

register - аналогичны auto, но память под них выделяется в регистрах процессора. Если такой возможности нет, то переменные обрабатываются как auto.

int a; //глобальная переменная void main(){

int b;//локальная переменная

extern int x;//переменная х определена в другом месте static int c;//локальная статическая переменная a=1;//присваивание глобальной переменной

int a;//локальная переменная а

a=2;//присваивание локальной переменной::a=3;//присваивание глобальной переменной

int x=4;//определение и инициализация х

В примере переменная а определена вне всех блоков. Областью действия переменной а является вся программа, кроме тех строк, где используется локальная переменная а. Переменные b и с – локальные, область их видимости – блок. Время жизни различно: память под b выделяется при входе в блок (т. к. по умолчанию класс памяти auto), освобождается при выходе из него. Переменная с (static) существует, пока работает программа.

Если при определении начальное значение переменным не задается явным образом, то компилятор обнуляет глобальные и статические переменные. Автоматические переменные не инициализируются..

Имя переменной должно быть уникальным в своей области действия.

Описание переменной может быть выполнено или как объявление, или как определение. Объявление содержит информацию о классе памяти и типе переменной, определение вместе с этой информацией дает указание выделить память. В примере extern int x; - объявление, а остальные – определения.

2.4.Знаки операций в Си++

Знаки операций обеспечивают формирование выражений. Выражения состоят из операндов, знаков операций и скобок. Каждый операнд является, в свою очередь, выражением или частным случаем выражения – константой или переменной.

Унарные операции

& получение адреса операнда

* Обращение по адресу (разыменование)

- унарный минус, меняет знак арифметического операнда

++ Увеличение на единицу:

префиксная операция - увеличивает операнд до его использо-

постфиксная операция увеличивает операнд после его исполь-

int a=(m++)+n; // a=4,m=2,n=2

int b=m+(++n);//a=3,m=1,n=3

уменьшение на единицу:

префиксная операция - уменьшает операнд до его использова-

постфиксная операция уменьшает операнд после его использо-

вычисление размера (в байтах) для объекта того типа, который

имеет операнд

имеет две формы

sizeof выражение

sizeof(float)//4

sizeof(1.0)//8, т. к. вещественные константы по умолчанию

Запись алгоритма на алгоритмическом (формальном) языке называется программой. Иногда само понятие алгоритма отождествляется с его записью, так что слова "алгоритм" и "программа" - почти синонимы. Небольшое различие заключается в том, что при упоминании алгоритма, как правило, имеют в виду основную идею его построения, общую для всех алгоритмических языков. Программа же всегда связана с записью алгоритма на конкретном формальном языке.

При изложении идеи алгоритма, например, при публикации в научной статье, не всегда целесообразно пользоваться каким-либо конкретным языком программирования, чтобы не загромождать изложение несущественными деталями. В таких случаях применяется неформальный алгоритмический язык , максимально приближенный к естественному. Язык такого типа называют псевдокодом . Для специалиста не составляет труда переписать программу с псевдокода на любой конкретный язык программирования. Запись алгоритма на псевдокоде зачастую яснее и нагляднее, она дает возможность свободно выбирать уровень детализации, начиная от описания в самых общих чертах и кончая подробным изложением.

Псевдокоды – это полуформализованные описания алгоритмов на условном алгоритмическом языке , включающие как элементы языка программирования, так и фразы естественного языка, общепринятые математические обозначения и другое.

Псевдокод представляет собой систему обозначений и правил, предназначенную для единообразной записи алгоритмов.

Псевдокод занимает промежуточное место между естественным языком и языками программирования. С одной стороны, он близок к обычному, естественному языку, поэтому алгоритмы могут на нем записываться и читаться как обычный текст. С другой стороны, в псевдокоде используются некоторые формальные конструкции и математическая символика, что приближает запись алгоритма к общепринятой математической записи.

В псевдокоде обычно имеются некоторые конструкции, присущие языкам программирования. Это облегчает переход от записи на псевдокоде к записи алгоритма на язык программирования для конкретной ЭВМ. В частности, в псевдокоде, так же как и в языках программирования, есть служебные слова, смысл которых определен раз и навсегда. Они выделяются в печатном тексте жирным шрифтом, а в рукописном тексте подчеркиваются.

Общий вид алгоритма :

алг название алгоритма (аргументы и результаты)

дано условия применимости алгоритма

надо цель выполнения алгоритма

нач описание промежуточных величин

последовательность команд (тело алгоритма)

Часть алгоритма от слова алг до слова нач называется заголовком, а часть, заключенная между словами нач и кон - телом алгоритма.

В предложении алг после названия алгоритма в круглых скобках указываются характеристики (арг, рез) и тип значения (цел, вещ, сим, лит или лог) всех входных (аргументы) и выходных (результаты) переменных. При описании массивов (таблиц) используется служебное слово таб , дополненное граничными парами по каждому индексу элементов массива.

Примеры предложений алг :

алг Объем и площадь цилиндра (арг вещ R, H, рез вещ V, S)

алг Корни КвУр (арг вещ а, b, c, рез вещ x1, x2, рез лит t)

алг Исключить элемент (арг цел N, арг рез вещ таб А)

алг Диагональ (арг цел N, арг цел таб A, рез лит Otvet)

Предложения дано и надо не обязательны. В них рекомендуется записывать утверждения, описывающие состояние среды исполнителя алгоритма, например:

алг Замена (арг лит Str1, Str2, арг рез лит Text)

дано | длины подстрок Str1 и Str2 совпадают

надо | всюду в строке Text подстрока Str1 заменена на Str2

алг Число максимумов (арг цел N, арг вещ таб A, рез цел K)

дано | N>0

надо | К - число максимальных элементов в таблице А

алг Сопротивление (арг вещ R1, R2, арг цел N, рез вещ R)

дано | N>5, R1>0, R2>0

надо | R - сопротивление схемы

Здесь в предложениях дано и надо после знака "|" записаны комментарии. Комментарии можно помещать в конце любой строки. Они не обрабатываются транслятором, но существенно облегчают понимание алгоритма.

Основные служебные слова алгоритмического языка:

алг (алгоритм) сим (символьный) дано для да

арг (аргумент) лит (литерный) надо от нет

рез (результат) лог (логический) если до при

нач (начало) таб(таблица) то знач выбор

кон (конец) нц (начало цикла) иначе и ввод

цел (целый) кц (конец цикла) все или вывод

вещ (вещественный) длин (длина) пока не утв

Основные команды:

1. Команда присваивания. Служит для вычисления выражений и присваивания их значений переменным. Общий вид: А:= В , где знак ":=" означает команду заменить прежнее значение переменной, стоящей в левой части, на вычисленное значение выражения, стоящего в правой части.

Например: a:= (b+c) * sin(Pi/4); i:= i+1.

Команды ввода и вывода.

ввод имена переменных (ввод данных с клавиатуры)

вывод имена переменных, выражения, тексты. (вывод данных на экран)

Команды ветвления.

Данные команды обеспечивают в зависимости от результата проверки условия (да или нет) выбор одного из альтернативных путей работы алгоритма. Каждый из путей ведет к общему выходу, так что работа алгоритма будет продолжаться независимо от того, какой путь будет выбран.

Структура ветвление существует в четырех основных вариантах:

1. Командаесли - то;

если условие

то действия

2. Командаесли - то - иначе;

если условие

то действия 1

иначе действия 2

3. Командавыбор;

Выбор

при условие 1: действия 1

при условие 2: действия 2

. . . . . . . . . . . .

при условие N: действия N

4. Командавыбор - иначе.

Выбор

при условие 1: действия 1

при условие 2: действия 2

. . . . . . . . . . . .

при условие N: действия N

иначе действия N+1

Команды цикла.

Обеспечивает многократное выполнение некоторой совокупности действий, которая называется телом цикла.

Для организации циклов существуют две команды:

1. Цикл типа Пока - Предписывает выполнять тело цикла до тех пор, пока выполняется условие, записанное после слова пока .

нц пока условие

тело цикла

(последовательность действий)

кц

2. Цикл типа Для - Предписывает выполнять тело цикла для всех значений некоторой переменной (параметра цикла) в заданном диапазоне.

нц для i от i1 до i2

тело цикла

(последовательность действий)

кц

ЯЗЫКИ ПРОГРАММИРОВАНИЯ

В настоящее время в мире существует несколько сотен реально используемых языков программирования. Для каждого есть своя область применения.

Любой алгоритм, как мы знаем, есть последовательность предписаний, выполнив которые можно за конечное число шагов перейти от исходных данных к результату. В зависимости от степени детализации предписаний обычно определяется уровень языка программирования - чем меньше детализация, тем выше уровень языка.

Язык программирования (алгоритмический язык) - набор правил, опреде­ляющих, какие последовательности символов составляют программу (синтаксические правила) и какие вычисления описывает программа (семантические правила).

Языки программированияимеют следующие характеристики:

  • Уровень языка - характеризуется сложностью задач, решаемых с помощью этого языка.
  • Мощность языка - характеризуется количеством и многообразием задач, алгоритмы решения которых можно записать, используя этот язык.
  • Надежность - язык должен обеспечивать минимум ошибок при написа­нии программ. Более того, язык должен быть таким, чтобы неправильные программы было трудно писать.
  • Удобочитаемост ь - легкость восприятия программ человеком. Это харак­теристика важна при коллективной работе, когда несколько человек работают с одними и теми же текстами программ.
  • Полнота - характеризует способность описать класс задач в некоторой предметной области.
  • Гибкость - характеризует легкость выражения необходимых действий.

По этому критерию можно выделить следующие уровни языков программирования:

  • машинные;
  • машинно-оpиентиpованные (ассемблеpы);
  • машинно-независимые (языки высокого уровня).

Машинные языки и машинно-ориентированные языки - это языки низкого уровня, требующие указания мелких деталей процесса обработки данных. Языки же высокого уровня имитируют естественные языки, используя некоторые слова разговорного языка и общепринятые математические символы. Эти языки более удобны для человека.

Языки высокого уровня делятся на:

  • процедурные (алгоритмические) (Basic, Pascal, C и др.), которые предназначены для однозначного описания алгоритмов; для решения задачи процедурные языки требуют в той или иной форме явно записать процедуру ее решения;
  • логические (Prolog, Lisp и др.) , которые ориентированы не на разработку алгоритма решения задачи, а на систематическое и формализованное описание задачи с тем, чтобы решение следовало из составленного описания;
  • объектно-ориентированные (Object Pascal, C++, Java и др.), в основе которых лежит понятие объекта, сочетающего в себе данные и действия над нами. Программа на объектно-ориентированном языке, решая некоторую задачу, по сути описывает часть мира, относящуюся к этой задаче. Описание действительности в форме системы взаимодействующих объектов естественнее, чем в форме взаимодействующих процедур.

Создание программы для ЭВМ включает следующие стадии:

§ анализ;

§ проектирование;

§ программирование;

§ тестирование и отладка;

§ эксплуатация.

К сегодняшнему дню насчитывают шесть поколений языков программиро­вания. Каждое из последующих поколений по своей функциональной мощности качественно отличается от предыдущего.

  • Первое поколение: Машинные языки. Появились в середине 40-х годов XX века.
  • Второе поколение: Ассемблеры. Фактически это те же машинные языки, но более красиво "обернутые". Появились в конце 50-х годов XX века
  • Третье поколение: Процедурные языки. Появились в начале 60-х годов XX века. К этому поколению относят универсальные языки высокого уровня, с помощью которых можно решать задачи из любых областей (например, Algol-60).
  • Четвертое поколение: Языки поддержки сложных структур данных (напри­мер, SQL). Появились в конце 60-х годов XX века.
  • Пятое поколение: Языки искусственного интеллекта (например, Prolog). Появились в начале 70-х годов XX века.
  • Шестое поколение: Языки нейронных сетей (самообучающиеся языки). Исследовательские работы в этой области начались в середине 80-х годов XX века.

ЗАКЛЮЧЕНИЕ

Для того чтобы ЭВМ могла выполнить какую-либо задачу ей необходимо выполнить определенную программу. Программа должна быть написана по строгим правилам, в виде, доступной для обработки на ЭВМ Такой набор правил называется языком программирования или алгоритмическим языком. Зная общий принцип построения и написания программ на ЭВМ, можно решать практически любые задачи необходимые в работе по информационной обработке данных.