Виды статистических данных. Формы представления статистических данных. Статистические расчеты кондитерского рынка

Предмет статистики менялся на протяжении всей истории развития статистической науки, до сих пор ученые не пришли к однозначному ответу по данному вопросу.

Предмет статистики – изучение общественных явлений и их анализ.

Так английские статистики Дж.Э.Юла, М.Дж.Кендэл считают: «Независимо от того, в какой отрасли знания получены числовые данные, они обладают определенного рода свойствами, для выявления которых может потребоваться особого рода научный метод обработки. Последний известен как статистический метод или статистика».

Универсальность статистики как науки связана с тем, что она занимается методами измерения и интерпретации, как в общественных науках, так и в науках о природе. Статистику признают особым методом, используемым в различных сферах деятельности, при решении разнообразных задач, определяемых как «собирание, представление и интерпретация числовых данных».

Статистическая методология и практика неразрывно связаны, дополняют и развивают друг друга. Статистическая теория обобщает опыт практической работы, развивает новые идеи и методы, обогащающие практическую статистическую деятельность. Статистическая практика – это научно организованная работа.

Таким образом, статистика – наука, изучающая количественную сторону массовых общественных явлений с целью установления закономерностей в неразрывной связи с их качественной стороной в конкретных условиях места и времени в их взаимосвязи и взаимозависимости (Н.Н. Ряузовский «Общая теория статистики»).

Суть данного определения связана с шестью основными моментами:

1. Изучаются не все явления, а только общественные и социально-экономические. Эти явления сложны, многообразны (например: производство труд, здравоохранение, культурная деятельность, население и др.), отличаются от явлений природы, которые имеют сравнительно устойчивый характер и повторяемость во времени.

2. Исследуются массовое социально-экономические явления, а не единичные, поскольку закономерности развития проявляются через множество фактов, при обобщении данных при достаточно большом числе единиц (закон больших чисел).

3. Явлениям дается количественная оценка, на основании которой раскрывается их качественное содержание (например: для количественного анализа безработицы применяется показатель занятости и коэффициент безработицы).

4. Числовые характеристики одного и того же явления различны в пространстве и во времени.

5. Социально-экономические явления изучаются в динамике с целью выявления тенденций и направленности развития, прогноза будущих ситуаций.

6. Изучение явлений во взаимосвязи и взаимозависимости.



Таким образом, при использовании статистических методов важно помнить о единстве количественной и качественной сторон изучаемого явления.

Итак, статистика занимается изучением массовых явлений или совокупностей.

Совокупность - представляет собой однородную по какому-либо признаку группу, которая состоит из ядра и окружающих его явлений («слой»). Ядро – концентрированное выражение всех специфических свойств данной группы, отличающих одну совокупность от других. «Слой» - единицы с неполным набором специфических свойств, которые принадлежат к данной совокупности с определенной вероятностью.

Например: совокупность – студенты, среди студентов есть:

- «идеальный студент» - отлично учится, много читает, активно участвует во внеучебной работе – это ядро.

Студент, для которого важны только «интересные», специальные знания; - это один слой.

Студент, которому интересная только внеучебная жизнь и т.д. – это другой слой.

Таким образом, «качество» одних студентов можно практически безошибочно отнести к тому или иному типу, других - достаточно сложно.

Соотношение ядра и его окружения в разных совокупностях различно, и зависит от условий существования совокупности: длительности, устойчивости, взаимодействия с другими совокупностями и др. Однако, ядро должно составлять большинство единиц совокупности, так как оно определяет ее характерные черты.

Поскольку статистика занимается изучением явлений в конкретный момент места и времени – она располагает ограниченным числом данных.

Статистическая совокупность – это множество объективно существующих единиц изучаемого явления, объединенных единой качественной основой, общей связью, но отличающихся друг от друга отдельными признаками. (Например, совокупность домохозяйств, совокупность семей, совокупность предприятий, фирм, объединений и т.п.).

Совокупность необходимо отличать от системы и структуры, поскольку в совокупности нет никакой упорядоченности, здесь все элементы разобщены.

Признак – это качественная особенность единицы совокупности.

По характеру отображения свойств единиц изучаемой совокупности признаки делятся на две основные группы:

1. Количественные – признаки, имеющие непосредственное количественное выражение, то есть их можно сложить (например: возраст, доход, количество детей, количество лет обучения, стаж работы и т.д.). Предполагают отношения «больше-меньше».

2. Качественные – признаки, не имеющие непосредственного количественного выражения, то есть признаки, которые нельзя сложить (например: пол, профессия, характер труда, отношение к чему-либо). Предполагают отношения «равенства-неравенства». (!не допускают отношения больше-меньше.)

Все качественные признаки делятся на:

Атрибутивные – являющиеся особенностью данного явления (например: профессия, характер труда и т.д.)

Альтернативные – противоположные по значению варианты (например: продукция годна или испорчена, для представителей отдельных возрастных групп существует вероятность дожить или не дожить до следующей возрастной группы; каждое лицо может состоять в браке или нет, мужчина или женщина и т.д.).

Кроме того, признаки в статистике могут делиться на разные группы, в зависимости от основания. Основные классификации признаков представлены на рисунке 1.2.

Классификации признаков в статистике

Описательные - признаки выражающиеся словесно (форма собственности предприятия, вид используемого сырья, профессия и т.д.) Описательные признаки подразделяют на номинальные, которые нельзя упорядочить, ранжировать (национальность, отраслевая принадлежность предприятия и др.) и порядковые, которые можно ранжировать (тарифный разряд, балл успеваемости студента, рейтинги компаний и др.).

Количественные признаки - такие, отдельные значения которых имеют числовое выражение (площадь территории региона, стоимость фондов предприятия, цена товара и тд.).

Первичные признаки характеризуют единицу совокупности в целом. Они могут быть измерены, сосчитаны, взвешены и существуют сами по себе независимо от их статистического изучения (численность жителей города, валовой сбор зерна, сумма страховых выплат).

Вторичные признаки получают расчетным путем через соотношение первичных признаков. Вторичные признаки являются продуктами человеческого сознания, результатами познания изучаемого объекта.

Прямые признаки - свойства, присущие тому объекту, который ими характеризуется.

Косвенные признаки - свойства, присущие не самому изучаемому объекту, а другим совокупностям, относящимся к объекту.

Альтернативные признаки - те, которые принимают только дна значения (пол человека, место проживания (город-село), признаки обладания или необладания чем-то.

Дискретные признаки. имеют только целочисленные значения.

Непрерывные признаки - способные принимать любые значения, как целые, так и дробные. К непрерывным относятся все вторичные признаки.

Моментные признаки - характеристики состояния, наличия чего-либо на определенный момент времени.

Интервальные признаки - характеристики процесса за определенный промежуток времени: год, полугодие, квартал, месяц, сутки и т.д.

Особенностью статистического исследования является то, что в нем изучаются только варьирующие признаки, т.е. признаки, принимающие различные значения (для атрибутивных, альтернативных признаков) или имеющие различные количественные уровни у отдельных единиц совокупности.

Значимым свойством статистической совокупности является вариация.

Вариация – это свойство статистической совокупности, отражающее способность к изменению, обусловленное как внешними, так и внутренними факторами, как связанными с сущностью исследуемого объекта, так и не связанными с ней.

Статистическая закономерность – это закономерность, устанавливаемая посредством закона больших чисел в массовых варьируемых явлениях, объединенных в статистическую совокупность.

Статистическая закономерность проявляется в тенденциях.

Функции статистики:

1. Описательная – с помощью цифр и чисел дается характеристика той или иной ситуации, процесса, явления

2. Объяснительная – выявляются причинно-следственные связи между явлениями и процессами; выявляются факторы, обусловливающие те или иные связи.

Природа статистических данных обусловлена 3 основными свойствами:

1. Неопределенность статистических данных

2. Вероятностный характер статистических данных (признак может принять это значение, а может и не принять)

3. Абстрактность статистических данных.


Елисеева И.И. Практикум по общей теории статистики. М.: Финансы и статистика, 2008. С.8.

Статистические данные должны быть адекватны, во первых к объекту изучения, во вторых ко времени, в которое они собираются и используются.

В данной главе описы ваются источники статистических данных, их виды и способы получения, а также приемы описания и, представления числовых и нечисловых данных.

После изучения данной главы ВЫ должны уметь:

  • -строить программу статистического исследования;
  • -определять источники статистической информаци;
  • -производить сводку и группировку статистических данных и формировать статистические таблицы;
  • -изображать результаты группировки в виде диаграмм;
  • -производить оценку основных характеристик: относительного значения, среднего значения, дисперсии, среднеквадратического отклонения, медианы, моды, размаха.

Получение исходных данных

Получение информации об объекте исследования является одной из основных задач статистического исследования.

При статистическом исследовании следует руководствоваться целями и требованиями к результатам. Они определяют методы статистического анализа, исходя из которых организуется сбор исходных данных. В процессе статистического исследования следует опасаться следующих ошибок: нечетко сформулированы цели, некорректно применены методы наблюдения.

Получение исходных данных для статистического исследования может быть выполнена двумя способами:

  • -активный эксперимент, спциально организованный для определения статистических зависимостей;
  • -статистическое наблюдение.

Активный эксперимент используется в технико-экономических исследованиях, когда, например, ставится задача оптимизации режимов технологических процессов по экономическим критериям.

При проведении статистического исследования социально-экономических процессов представляется возможным использовать только наблюдение. Программа является основой данного способа получения информации. Она состоит из трех основных этапов:

  • -определение объекта исследования;
  • -выбор единицы совокупности;
  • -определение системы показателей, подлежащих регистрации.

Объектом наблюдений называется совокупность единиц изучаемого явления, о которых могут быть собраны статистические сведения. Для четкого определения объекта наблюдения следует ответить на следующие вопросы:

  • -что? (какие элементы будем исследовать);
  • -где? (в каком месте будет вестись наблюдение _;
  • -когда? (за какой период).

Сточки зрения организации статистического наблюдения различают две основные формы: отчетность и специально организованное статистическое наблюдение.

Отчетность как форма наблюдения характеризуется тем, что статистические органы систематически получают от предприятий, учреждений и организаций в установленные сроки сведения об условиях и результатах работы за прошедший период, объем и содержание которых определны утвержденными формами отчетности.

Специально организованное статистическое наблюдение представляет собой сбор сведений в форме переписей единовременных учетов и обследований. Их организуют для изучения тех явлений, которые не могут быть охвачены обязательной отчетностью.

Виды статистического наблюдения различают по времени регистрации данных и по степени охвата единиц изучаемой совокупности. По характеру регистрации данных во времени наблюдение можно классифицировать:

  • -непрерывное (например учет произведенной продукции);
  • -периодическое(бухгалтерская отчетность);
  • -единовременное, в случае потребности в информации, например, перепись населения.

По степени охвата единиц изучаемой совокупности:

  • -несплошное, выборочное, когда обследуется невся совокупность, а некоторая ее часть;
  • -сплошное, т.е описание всех единиц совокупности;
  • -монографическое, когда подробно описывается типовые объекты.

Основными способами получения статистической информации являются непостедственное наблюдение, документальный способ и опрос.

Способнепосредственного наблюдения характеризуется тем, что представители органов государственной статистики или других организаций записывают данные в статистические документы после личного осмотра, пересчета, измерения или взвешивания единиц ноблюдения.

При документальном способе наблюдения источником служат различные документы.Этот спосо используется при составлении предприятиями и учреждениями статистической отчетности на основе документов пнрвичного учета.

При опросе источником сведений являются ответы опрашиваемых лиц. Опрос может быть организован по-разному: экспедиционным способом, соморегистрацией, корреспондендским способом и анкетным способом.

При экпедиционном способе представители статистических органов спрашивают обследуемое лицо и с его слов записывают сведения в бланках наблюдния.

При способе саморегистрации обследуемым единицам (предприятиям или гражданам) вручают бланк обследования и даюь указания по его заполнению. Заполненные бланки в указанный срок пересылают по почте.

При корреспондентском способе сведения статистическим органам сообщают добровольные корреспонденты.

Анкетный способ сбора данных основан на принципе добровольного заполнения адресатами анкет.

Поэтому обычно статистическая таблица определяется как форма компактного наглядного представления статистических данных.

Анализ таблиц позволяет решать многие задачи при изучении изменения явлений во времени, структуры явлений и их взаимосвязей. Таким образом, статистические таблицы выполняют роль универсального средства рационального представления, обобщения и анализа статистической информации.

Внешне статистическая таблица представляет собой систему построенных особым образом горизонтальных строк и вертикальных столбцов, имеющих общий заголовок, заглавия граф и строк, на пересечении которых и записываются статистические данные.

Каждая цифра в статистических таблицах — это конкретный показатель, характеризующий размеры или уровни, динамику, структуру или взаимосвязи явлений в конкретных условиях места и времени, то есть определенная количественно-качественная характеристика изучаемого явления.

Если таблица не заполнена цифрами, то есть имеет только общий заголовок, заглавия граф и строк, то мы имеем макет статистической таблицы. Именно с его разработки и начинается процесс составления статистических таблиц.

Основными элементами статистической таблицы являются подлежащее и сказуемое таблицы .

Подлежащее таблицы — это объект статистического изучения, то есть отдельные единицы совокупности, их группы или вся совокупность в целом.

Сказуемое таблицы — это статистические показатели, характеризующие изучаемый объект.

Подлежащее и показатели сказуемого таблицы должны быть определены очень точно. Как правило подлежащее распологается в левой части таблицы и составляет содержание строк, а сказуемое — в правой части таблицы и составляет содержание граф.

Обычно при расположении показателей сказуемого в таблице придерживаются следующего правила: сначала приводят абсолютные показатели, характеризующие объем изучаемой совокупности, затем — расчетные относительные показатели, отражающие структуру, динамику и взаимосвязи между показателями.

Построение аналитических таблиц

Построение аналитических таблиц таково. Любая таблица состоит из подлежащего и сказуемого. Подлежащее раскрывает экономическое явление, о котором идет речь в данной таблице и содержит набор показателей, отображающих это явление. Сказуемое таблицы поясняет, какие именно признаки отображают подлежащее.

Некоторые таблицы отражают изменения структуры каких-либо . В таких таблицах помещается информация о составе анализируемого экономического явления как в базисном, так и в отчетном периоде. По этим данным определяется доля (удельный вес) каждой части в общей совокупности и рассчитываются отклонения от базисных удельных весов по каждой части.

Отдельные таблицы могут отражать взаимосвязь между экономическими показателями по каким-либо признакам. В подобных таблицах информация по данному экономическому показателю располагается в порядке возрастания или убывания числовых величин, характеризующих этот показатель.

В экономическом анализе составляются также таблицы, отражающие результаты определения влияния отдельных факторов на величину анализируемого обобщающего (результативного) показателя. При оформлении подобных таблиц вначале помещают информацию о факторах, влияющих на обобщающий показатель, затем информацию о самом обобщающем показателе и наконец об изменении этого показателя в совокупности, а также за счет воздействия каждого анализируемого фактора. Отдельные аналитические таблицы отражают результаты подсчета резервов улучшения экономических показателей, выявленные в результате проведенного анализа. В таких таблицах показывается как фактический, так и теоретически возможный размер влияния отдельных факторов, а также возможная величина резерва роста обобщающего показателя за счет влияния каждого отдельного фактора.

Наконец, в анализе хозяйственной деятельности составляются также таблицы, которые предназначены для обобщения результатов проведенного анализа.

Практикой статистики разработаны следующие правила составления таблиц:
  • Таблица должна быть выразительной и компактной. Поэтому вместо одной громозкой таблицы по множеству признаков лучше сделать несколько небольших по объему, но наглядных, отвечающих задаче исследования таблиц.
  • Название таблицы, заглавия граф и строк следует формулировать точно и лаконично.
  • В таблице обязательно должны быть указаны: изучаемый объект, территория, и время к которым относятся приводимые в таблице данные, единицы измерения.
  • Если какие-то данные отсутствуют, то в таблице либо ставят многоточие, либо пишут "нет сведений", если какое-то явление не имело места, то ставят тире
  • Значения одних и тех же показателей приводятся в таблице с одинаковой степенью точности.
  • Таблица должна иметь итоги по группам, подгруппам и в целом. Если суммирование данных невозможно, то в этой графе ставят знак умножения "*".
  • В больших таблицах после каждых пяти строк деляют промежуток, чтобы было удобнее читать и анализировать таблицу.

Виды статистических таблиц

Среди методов наиболее распространен табличный метод (способ) отображения исследуемых цифровых данных. Дело в том, что как исходные данные для проведения анализа, так и различные расчеты, а также результаты проведенного исследования оформляются в виде аналитических таблиц. Таблицы представляют собой весьма целесообразную и наглядную форму отображения числовой информации, используемой в . В аналитических таблицах в определенном порядке располагается цифровая информация об изучаемых экономических явлениях. Табличный материал гораздо более информативен и нагляден по сравнению с текстовым изложением материала. Таблицы позволяют представить аналитические материалы в виде единой целостной системы.

Вид статистической таблицы определятеся характером разработки показателей ее полежащего.

Различают три вида статистических таблиц:
  • простые
  • групповые
  • комбинационные

Простые таблицы содержат перечень отдельных единиц, входящих в состав совокупности анализируемого экономического явления. В групповых таблицах цифровая информация в разрезе отдельных составных частей исследуемой совокупности данных объединяется в определенные группы в соответствии с каким-либо признаком. Комбинированные таблицы содержат отдельные группы и подгруппы, на которые подразделяются , характеризующие изучаемое экономическое явление. При этом такое подразделение осуществляется не по одному, а по нескольким признакам. в групповых таблицах осуществляется простая группировка показателей, а в комбинированных — комбинированная группировка. Простые таблицы вообще не содержат никакой группировки показателей. Последний вид таблиц содержит лишь несгруппированный набор сведений об анализируемом экономическом явлении.

Простые таблицы

Простые таблицы имеют в подлежащем перечень единиц совокупности, времени или территорий.

Групповые таблицы

Групповыми называются таблицы, имеющие в подлежащем группировку единиц совокупности по одному признаку.

Комбинационные таблицы

Комбинационные таблицы имеют в подлежащем группировку единиц совокупности по двум или более признакам.

По характеру разработки показателей сказуемого различают:

  • таблицы с простой разработкой показателей сказуемого, в которых имеет место параллельное расположение показателей сказуемого.
  • таблицы со сложной разработкой показателей сказуемого, в которых имеет место комбинирование показателей сказуемого: внутри групп, образованных по одному признаку, выделяют подгруппы по другому признаку.

Таблица с простой разработкой показателей сказуемого

В сказуемом этой таблицы приводятся данные сначала о распределении студентов по полу, а затем — по возрасту, т.е. имеют место изолированные характеристики по двум признакам.

Таблица со сложной разработкой показателей сказуемого

Отделения

Численность студентов, чел.

В том числе

из них в возрасте, лет

из них в возрасте, лет

23 и более

23 и более

Вечернее

Сказуемое этой таблицы не только характеризует распределение студентов по каждому из двух выделенных признаков, но и позволяет изучить состав каждой группы, выделенной по одному признаку — полу, по другому признаку — возрасту студентво, т.е. имеет место комбинирование двух признаков.

Следовательно, таблицы со сложной разработкой показателей сказуемого обеспечивают более широкие возможности для анализа изучаемых показателей и взаимосвязей между ними. Простую и сложную разработку показателей сказуемого может иметь таблица любого вида: простая, групповая, комбинационная.

В зависимости от этапа статистического исследования таблицы делятся на:
  • разработочные (вспомогательные), цель которых обобщить информацию по отдельным единицам совокупности для получения итоговых показателей.
  • сводные , задача которых показать итоги по группам и всей совокупности в целом.
  • аналитические таблицы, задача которых — расчет обобщающих характеристик и подготовка информационной базы для анализа и структуры и структурыных сдвигов, динамики изучаемых явлений и взяимосвязей между показателями.

Итак, мы рассмотрели табличный метод отображения исследуемых цифровых данных, широко используемый в ходе проведения анализа экономических явлений, статистических данных и хозяйственной деятельности организаций.

Статистическая методология – система приёмов и методов, направленных на изучение количественных закономерностей, проявляющихся в структуре, динамике и взаимосвязях социально-экономических явлений.

Статистическое исследование состоит из трёх стадий:

1. Статистическое наблюдение;

2. Первичная обработка, сводка и группировка результатов наблюдения;

3. Анализ полученных сводных материалов.

Прохождение каждой стадии исследования связано с использованием специальных методов, объясняемых содержанием выполняемой работы.

1) Статистическое наблюдение – научно организованный сбор сведений об изучаемых социально-экономических процессах или явлениях. Полученные данные являются исходным материалом для выполнения последующих этапов статистического исследования. Эти данные необходимо обработать определённым образом. Такая обработка является следующей стадией статистического исследования.

2) Сводка исходных данных для получения обобщающих характеристик исследуемого процесса или явления. Результаты статистической сводки и группировки излагаются в виде статистических таблиц.

3) Статистический анализ – заключительная стадия статистического исследования. В его процессе исследуется структура, динамика и взаимосвязи общественных явлений и процессов. Выделяют следующие основные этапы анализа:

· Констатация фактов и их оценка;

· Установление характерных черт и причин явления;

· Сопоставление явления с другими явлениями;

· Формулирование гипотез, выводов и предположений;

· Статистическая проверка выдвинутых гипотез с помощью специальных статистических показателей.

Общая теория статистики – наука о наиболее общих принципах, правилах и законах цифрового освещения социально-экономических явлений. Она является методологической основой всех отраслей статистики.

Статистические данные – совокупность количественных характеристик социально-экономических явлений и процессов, полученных в результате статистического наблюдения, их обработки или соответствующих расчетов.

Статистическое наблюдение – это массовое, планомерное, научно организованное наблюдение за явлениями социальной и экономической жизни, которое заключается в регистрации отобранных признаков у каждой единицы совокупности. Процесс статистического наблюдения включает следующие этапы:

  1. Подготовка наблюдения. На этой стадии решаются научно-методологические (определение цели и объекта наблюдения, состава признаков, подлежащих регистрации; разработка документов для сбора данных; выбор отчетной единицы и единицы, относительно которой будет проводиться наблюдение, а также методов, средств и времени получения данных и т.д.) и организационные вопросы (определение состава органов, проводящих наблюдение; подбор и подготовка кадров для проведения наблюдения; составление календарного плана работ по подготовке, проведению и обработке материалов наблюдения; тиражирование документов для сбора данных и др.).
  2. Проведение массового сбора данных.
  3. Разработка предложений по совершенствованию статистического наблюдения.

3/ Программно-методологические и организационные вопросы статистического наблюдения.

Программно-методологические вопросы определяют цели и объекты наблюдения, признаки, подлежащие регистрации, разрабатываются документы для сбора данных, определяются методы и средства получения данных и другое.

Организационные вопросы подразумевают следующие виды работ: подбор и подготовка кадров; составление календарного плана работ по подготовке и проведению статистического наблюдения; обрабатываются материалы, которые будут использованы в статистического наблюдении.

Цель наблюдения – получение достоверной информации для выявления зависимостей развития явлений и процессов.

Объект наблюдения – некоторая статистическая совокупность, в которой проистекают исследуемые социально-экономические явления и процессы.

Для определения объекта необходимо определить границы изучаемой совокупности, для чего следует указать важнейшие признаки, отличающие его от других схожих совокупностей. Каждый объект состоит из отдельных элементов, т.е. единиц наблюдения, которые являются носителем признаков, подлежащих регистрации.

Отчетная единица – это субъект, от которого поступают данные об единице наблюдения.

Программа наблюдения – это перечень признаков (вопросов), подлежащих регистрации в процессе наблюдения.

Статистический формуляр – это документ единого образца, содержащий программу и результаты наблюдения. Примером могут быть переписной лист, опросный план, анкета и др. При этом различают две системы статистического формуляра:

1) Индивидуальный (карточный), который предусматривает запись ответов на вопросы только об одной единице наблюдения.

2) Списочный предусматривает ответы на вопросы о нескольких единицах наблюдения.

Выбор времени, когда будет проводиться наблюдение, заключается в решении двух вопросов:

– установлении критического момента (даты) или интервала времени.

– определение срока или периода наблюдения.

Критический момент (дата) – конкретный день года, час дня, по состоянию на который должна быть проведена регистрация признаков по каждой единице исследуемой совокупности.

Срок (период) наблюдения – это время, в течение которого происходит заполнение статистических формуляров, т.е. время, необходимое для проведения массового сбора данных.

Формы, виды и способы статистического наблюдения.

1) Отчетность – основная форма статистического наблюдения, с помощью которой статистические органы в определенные сроки получают от предприятий, учреждений необходимые данные в виде установленных отчетных документов.

Как правило, отчетность основана на первичном учете и является его обобщением.

Первичный учет – регистрация различных фактов, событий, которые производятся по мере их совершения.

Регистрация происходит на определенном социальном документе, при этом действующая статистическая отчетность бывает типовая и специализированная.

Типовая – единая для всех предприятий, а в специализированной состав показателей отраслей изменяется в зависимости от особенностей отдельных отраслей.

Отчетность бывает ежедневной, недельной, двухнедельной, месячной, квартальной, годовой. Все перечисленные, кроме годовой, являются текущими.

2) Специально организованное статистическое наблюдение.

Ярким примером является перепись – специально организованная отчетность, которая повторяется через равные промежутки времени с целью получения данных о численности, составе и состоянии объекта по ряду признаков.

Особенности переписи:

Одновременность ее проведения на всей территории страны

Единство программы статистического наблюдения

Регистрация единиц наблюдения по состоянию на один и тот же критический момент.

К данной форме относятся бюджетные обследования, характеризующие структуру потребительских расходов и доходов семьи.

3) Регистр – система, постоянно следящая за состоянием единицы наблюдения и оценивающую силу воздействия различных факторов на изучаемые показатели.

Регистр населения – поименованный и регулярно изменяемый перечень жителей страны. В данном случае программа наблюдения ограниченна общими признаками (пол, дата и место рождения, дата вступления в брак).

Существует такой признак, как брачное состояние (переменный признак).

Регистр предприятий, который включает в себя все виды экономической деятельности и содержит значение основных признаков по каждой единице наблюдения за определенный период или момент времени. Содержит данные о времени создания или регистрации предприятий, название, адрес, телефон, организационно-правовую форму, вид экономической деятельности, количество занятых и т.д., т.е. полную информацию о предприятии.

Объектом исследования в прикладной статистике являются статистические данные, полученные в результате наблюдений или экспериментов. Статистические данные – это совокупность объектов (наблюдений, случаев) и признаков (переменных), их характеризующих. Например, объекты исследования – страны мира и признаки, – географические и экономические показатели их характеризующие: континент; высота местности над уровнем моря; среднегодовая температура; место страны в списке по качеству жизни, доли ВВП на душу населения; расходы общества на здравоохранение, образование, армию; средняя продолжительность жизни; доля безработицы, безграмотных; индекс качества жизни и т.д.
Переменные – это величины, которые в результате измерения могут принимать различные значения.
Независимые переменные – это переменные, значения которых в процессе экперимента можно изменять, а зависимые переменные – это переменные, значения которых можно только измерять.
Переменные могут быть измерены в различных шкалах. Различие шкал определяется их информативностью. Рассматривают следующие типы шкал, представленные в порядке возрастания их информативности: номинальная, порядковая, интервальная, шкала отношений, абсолютная. Эти шкалы отличаются друг от друга также и количеством допустимых математических действий. Самая «бедная» шкала – номинальная, так как не определена ни одна арифметическая операция, самя «богатая» – абсолютная.
Измерение в номинальной (классификационной) шкале означает определение принадлежности объекта (наблюдения) к тому или иному классу. Например: пол, род войск, профессия, континент и т.д. В этой шкале можно лишь посчитать количество объектов в классах – частоту и относительную частоту.
Измерение в порядковой (ранговой) шкале, помимо определения класса принадлежности, позволяет упорядочить наблюдения, сравнив их между собой в каком-то отношении. Однако эта шкала не определяет дистанцию между классами, а только то, какое из двух наблюдений предпочтительнее. Поэтому порядковые экспериментальные данные, даже если они изображены цифрами, нельзя рассматривать как числа и выполнять над ними арифметические операции 5 . В этой шкале дополнительно к подсчету частоты объекта можно вычислить ранг объекта. Примеры переменных, измеренных в порядковой шкале: бальные оценки учащихся, призовые места на соревнованиях, воинские звания, место страны в списке по качеству жизни и т.д. Иногда номинальные и порядковые переменные называют категориальными, или группирующими, так как они позволяют произвести разделение объектов исследования на подгруппы.
При измерении в интервальной шкале упорядочивание наблюдений можно выполнить настолько точно, что известны расстояния между любыми двумя их них. Шкала интервалов единственна с точностью до линейных преобразований (y = ax + b). Это означает, что шкала имеет произвольную точку отсчета – условный нуль. Примеры переменных, измеренных в интервальной шкале: температура, время, высота местности над уровнем моря. Над переменными в данной шкале можно выполнять операцию определения расстояния между наблюдениями. Расстояния являются полноправными числами и над ними можно выполнять любые арифметические операции.
Шкала отношений похожа на интервальную шкалу, но она единственна с точностью до преобразования вида y = ax. Это означает, что шкала имеет фиксированную точку отсчета – абсолютный нуль, но произвольный масштаб измерения. Примеры переменных, измеренных в шкале отношений: длина, вес, сила тока, количество денег, расходы общества на здравоохранение, образование, армию, средняя продолжительность жизни и т.д. Измерения в этой шкале – полноправные числа и над ними можно выполнять любые арифметические действия.
Абсолютная шкала имеет и абсолютный нуль, и абсолютную единицу измерения (масштаб). Примером абсолютной шкалы является числовая прямая. Эта шкала безразмерна, поэтому измерения в ней могут быть использованы в качестве показателя степени или основания логарифма. Примеры измерений в абсолютной шкале: доля безработицы; доля безграмотных, индекс качества жизни и т.д.
Большинство статистических методов относятся к методам параметрической статистики, в основе которых лежит предположение, что случайный вектор переменных образует некоторое многомерное распределение, как правило, нормальное или преобразуется к нормальному распределению. Если это предположение не находит подтверждения, следует воспользоваться непараметрическими методами математической статистики.

Корреляционный анализ. Между переменными (случайными величинами) может существовать функциональная связь, проявляющаяся в том, что одна из них определяется как функция от другой. Но между переменными может существовать и связь другого рода, проявляющаяся в том, что одна из них реагирует на изменение другой изменением своего закона распределения. Такую связь называют стохастической. Она появляется в том случае, когда имеются общие случайные факторы, влияющие на обе переменные. В качестве меры зависимости между переменными используется коэффициент корреляции (r), который изменяется в пределах от –1 до +1. Если коэффициент корреляции отрицательный, это означает, что с увеличением значений одной переменной значения другой убывают. Если переменные независимы, то коэффициент корреляции равен 0 (обратное утверждение верно только для переменных, имеющих нормальное распределение). Но если коэффициент корреляции не равен 0 (переменные называются некоррелированными), то это значит, что между переменными существует зависимость. Чем ближе значение r к 1, тем зависимость сильнее. Коэффициент корреляции достигает своих предельных значений +1 или -1, тогда и только тогда, когда зависимость между переменными линейная. Корреляционный анализ позволяет установить силу и направление стохастической взаимосвязи между переменными (случайными величинами). Если переменные измерены, как минимум, в интервальной шкале и имеют нормальное распределение, то корреляционный анализ осуществляется посредством вычисления коэффициента корреляции Пирсона, в противном случае используются корреляции Спирмена, тау Кендала, или Гамма.

Регрессионный анализ. В регрессионном анализе моделируется взаимосвязь одной случайной переменной от одной или нескольких других случайных переменных. При этом, первая переменная называется зависимой, а остальные – независимыми. Выбор или назначение зависимой и независимых переменных является произвольным (условным) и осуществляется исследователем в зависимости от решаемой им задачи. Независимые переменные называются факторами, регрессорами или предикторами, а зависимая переменная – результативным признаком, или откликом.
Если число предикторов равно 1, регрессию называют простой, или однофакторной, если число предикторов больше 1 – множественной или многофакторной. В общем случае регрессионную модель можно записать следующим образом:

Y = f(x 1 , x 2 , …, x n),

Где y – зависимая переменная (отклик), x i (i = 1,…, n) – предикторы (факторы), n – число предикторов.
Посредством регрессионного анализа можно решать ряд важных для исследуемой проблемы задач:
1). Уменьшение размерности пространства анализируемых переменных (факторного пространства), за счет замены части факторов одной переменной – откликом. Более полно такая задача решается факторным анализом.
2). Количественное измерение эффекта каждого фактора, т.е. множественная регрессия, позволяет исследователю задать вопрос (и, вероятно, получить ответ) о том, «что является лучшим предиктором для...». При этом, становится более ясным воздействие отдельных факторов на отклик, и исследователь лучше понимает природу изучаемого явления.
3). Вычисление прогнозных значений отклика при определенных значениях факторов, т.е. регрессионный анализ, создает базу для вычислительного эксперимента с целью получения ответов на вопросы типа «Что будет, если… ».
4). В регрессионном анализе в более явной форме выступает причинно-следственный механизм. Прогноз при этом лучше поддается содержательной интерпретации.

Канонический анализ. Канонический анализ предназначен для анализа зависимостей между двумя списками признаков (независимых переменных), характеризующих объекты. Например, можно изучить зависимость между различными неблагоприятными факторами и появлением определенной группы симптомов заболевания, или взаимосвязь между двумя группами клинико-лабораторных показателей (синдромов) больного. Канонический анализ является обобщением множественной корреляции как меры связи между одной переменной и множеством других переменных. Как известно, множественная корреляция есть максимальная корреляция между одной переменной и линейной функцией других переменных. Эта концепция была обобщена на случай связи между множествами переменных – признаков, характеризующих объекты. При этом достаточно ограничиться рассмотрением небольшого числа наиболее коррелированных линейных комбинаций из каждого множества. Пусть, например, первое множество переменных состоит из признаков у1, …, ур, второе множество состоит из – х1, …, хq, тогда взаимосвязь между данными множествами можно оценить как корреляцию между линейными комбинациями a1y1 + a2y2 + ... + apyp, b1x1 + b2x2 + ... + bqxq, которая называется канонической корреляцией. Задача канонического анализа в нахождении весовых коэффициентов таким образом, чтобы каноническая корреляция была максимальной.

Методы сравнения средних. В прикладных исследованиях часто встречаются случаи, когда средний результат некоторого признака одной серии экспериментов отличается от среднего результата другой серии. Так как средние это результаты измерений, то, как правило, они всегда различаются, вопрос в том, можно ли объяснить обнаруженное расхождение средних неизбежными случайными ошибками эксперимента или оно вызвано определенными причинами. Если идет речь о сравнении двух средних, то можно применять критерий Стьюдента (t-критерий). Это параметрический критерий, так как предполагается, что признак имеет нормальное распределение в каждой серии экспериментов. В настоящее время модным стало применение непараметрических критериев сравнения средних
Сравнение средних результата один из способов выявления зависимостей между переменными признаками, характеризующими исследуемую совокупность объектов (наблюдений). Если при разбиении объектов исследования на подгруппы при помощи категориальной независимой переменной (предиктора) верна гипотеза о неравенстве средних некоторой зависимой переменной в подгруппах, то это означает, что существует стохастическая взаимосвязь между этой зависимой переменной и категориальным предиктором. Так, например, если установлено, что неверна гипотеза о равенстве средних показателей физического и интеллектуального развития детей в группах матерей, куривших и не куривших в период беременности, то это означает, что существует зависимость между курением матери ребенка в период беременности и его интеллектуальным и физическим развитием.
Наиболее общий метод сравнения средних дисперсионный анализ. В терминологии дисперсионного анализа категориальный предиктор называется фактором.
Дисперсионный анализ можно определить как параметрический, статистический метод, предназначенный для оценки влияния различных факторов на результат эксперимента, а также для последующего планирования экспериментов. Поэтому в дисперсионном анализе можно исследовать зависимость количественного признака от одного или нескольких качественных признаков факторов. Если рассматривается один фактор, то применяют однофакторный дисперсионный анализ, в противном случае используют многофакторный дисперсионный анализ.

Частотный анализ. Таблицы частот, или как еще их называют одновходовые таблицы, представляют собой простейший метод анализа категориальных переменных. Таблицы частот могут быть с успехом использованы также для исследования количественных переменных, хотя при этом могут возникнуть трудности с интерпретацией результатов. Данный вид статистического исследования часто используют как одну из процедур разведочного анализа, чтобы посмотреть, каким образом различные группы наблюдений распределены в выборке, или как распределено значение признака на интервале от минимального до максимального значения. Как правило, таблицы частот графически иллюстрируются при помощи гистограмм.

Кросстабуляция (сопряжение) – процесс объединения двух (или нескольких) таблиц частот так, что каждая ячейка в построенной таблице представляется единственной комбинацией значений или уровней табулированных переменных. Кросстабуляция позволяет совместить частоты появления наблюдений на разных уровнях рассматриваемых факторов. Исследуя эти частоты, можно выявить связи между табулированными переменными и исследовать структуру этой связи. Обычно табулируются категориальные или количественные переменные с относительно небольшим числом значений. Если надо табулировать непрерывную переменную (предположим, уровень сахара в крови), то вначале ее следует перекодировать, разбив диапазон изменения на небольшое число интервалов (например, уровень: низкий, средний, высокий).

Анализ соответствий. Анализ соответствий по сравнению с частотным анализом содержит более мощные описательные и разведочные методы анализа двухвходовых и многовходовых таблиц. Метод, так же, как и таблицы сопряженности, позволяет исследовать структуру и взаимосвязь группирующих переменных, включенных в таблицу. В классическом анализе соответствий частоты в таблице сопряженности стандартизуются (нормируются) таким образом, чтобы сумма элементов во всех ячейках была равна 1.
Одна из целей анализа соответствий – представление содержимого таблицы относительных частот в виде расстояний между отдельными строками и/или столбцами таблицы в пространстве более низкой размерности.

Кластерный анализ. Кластерный анализ – это метод классификационного анализа; его основное назначение – разбиение множества исследуемых объектов и признаков на однородные в некотором смысле группы, или кластеры. Это многомерный статистический метод, поэтому предполагается, что исходные данные могут быть значительного объема, т.е. существенно большим может быть как количество объектов исследования (наблюдений), так и признаков, характеризующих эти объекты. Большое достоинство кластерного анализа в том, что он дает возможность производить разбиение объектов не по одному признаку, а по ряду признаков. Кроме того, кластерный анализ в отличие от большинства математико-статистических методов не накладывает никаких ограничений на вид рассматриваемых объектов и позволяет исследовать множество исходных данных практически произвольной природы. Так как кластеры – это группы однородности, то задача кластерного анализа заключается в том, чтобы на основании признаков объектов разбить их множество на m (m – целое) кластеров так, чтобы каждый объект принадлежал только одной группе разбиения. При этом объекты, принадлежащие одному кластеру, должны быть однородными (сходными), а объекты, принадлежащие разным кластерам, – разнородными. Если объекты кластеризации представить как точки в n-мерном пространстве признаков (n – количество признаков, характеризующих объекты), то сходство между объектами определяется через понятие расстояния между точками, так как интуитивно понятно, что чем меньше расстояние между объектами, тем они более схожи.

Дискриминантный анализ. Дискриминантный анализ включает статистические методы классификации многомерных наблюдений в ситуации, когда исследователь обладает так называемыми обучающими выборками. Этот вид анализа является многомерным, так как использует несколько признаков объекта, число которых может быть сколь угодно большим. Цель дискриминантного анализ состоит в том, чтобы на основе измерения различных характеристик (признаков) объекта классифицировать его, т. е. отнести к одной из нескольких заданных групп (классов) некоторым оптимальным способом. При этом предполагается, что исходные данные наряду с признаками объектов содержат категориальную (группирующую) переменную, которая определяет принадлежность объекта к той или иной группе. Поэтому в дискриминантном анализе предусмотрена проверка непротиворечивости классификации, проведенной методом, с исходной эмпирической классификацией. Под оптимальным способом понимается либо минимум математического ожидания потерь, либо минимум вероятности ложной классификации. В общем случае задача различения (дискриминации) формулируется следующим образом. Пусть результатом наблюдения над объектом является построение k-мерного случайного вектора Х = (X1, X2, …, XК), где X1, X2, …, XК – признаки объекта. Требуется установить правило, согласно которому по значениям координат вектора Х объект относят к одной из возможных совокупностей i, i = 1, 2, …, n. Методы дискриминации можно условно разделить на параметрические и непараметрические. В параметрических известно, что распределение векторов признаков в каждой совокупности нормально, но нет информации о параметрах этих распределений. Непараметрические методы дискриминации не требуют знаний о точном функциональном виде распределений и позволяют решать задачи дискриминации на основе незначительной априорной информации о совокупностях, что особенно ценно для практических применений. Если выполняются условия применимости дискриминантного анализа – независимые переменные–признаки (их еще называют предикторами) должны быть измерены как минимум в интервальной шкале, их распределение должно соответствовать нормальному закону, необходимо воспользоваться классическим дискриминантным анализом, в противном случае – методом общие модели дискриминантного анализа.

Факторный анализ. Факторный анализ – один из наиболее популярных многомерных статистических методов. Если кластерный и дискриминантный методы классифицируют наблюдения, разделяя их на группы однородности, то факторный анализ классифицирует признаки (переменные), описывающие наблюдения. Поэтому главная цель факторного анализа – сокращение числа переменных на основе классификация переменных и определения структуры взаимосвязей между ними. Сокращение достигается путем выделения скрытых (латентных) общих факторов, объясняющих связи между наблюдаемыми признаками объекта, т.е. вместо исходного набора переменных появится возможность анализировать данные по выделенным факторам, число которых значительно меньше исходного числа взаимосвязанных переменных.

Деревья классификации. Деревья классификации – это метод классификационного анализа, позволяющий предсказывать принадлежность объектов к тому или иному классу в зависимости от соответствующих значений признаков, характеризующих объекты. Признаки называются независимыми переменными, а переменная, указывающая на принадлежность объектов к классам, называется зависимой. В отличие от классического дискриминантного анализа, деревья классификации способны выполнять одномерное ветвление по переменными различных типов категориальным, порядковым, интервальным. Не накладываются какие-либо ограничения на закон распределения количественных переменных. По аналогии с дискриминантным анализом метод дает возможность анализировать вклады отдельных переменных в процедуру классификации. Деревья классификации могут быть, а иногда и бывают, очень сложными. Однако использование специальных графических процедур позволяет упростить интерпретацию результатов даже для очень сложных деревьев. Возможность графического представления результатов и простота интерпретации во многом объясняют большую популярность деревьев классификации в прикладных областях, однако, наиболее важные отличительные свойства деревьев классификации – их иерархичность и широкая применимость. Структура метода такова, что пользователь имеет возможность по управляемым параметрам строить деревья произвольной сложности, добиваясь минимальных ошибок классификации. Но по сложному дереву, из-за большой совокупности решающих правил, затруднительно классифицировать новый объект. Поэтому при построении дерева классификации пользователь должен найти разумный компромисс между сложностью дерева и трудоемкостью процедуры классификации. Широкая сфера применимости деревьев классификации делает их весьма привлекательным инструментом анализа данных, но не следует полагать, что его рекомендуется использовать вместо традиционных методов классификационного анализа. Напротив, если выполнены более строгие теоретические предположения, налагаемые традиционными методами, и выборочное распределение обладает некоторыми специальными свойствами (например, соответствие распределения переменных нормальному закону), то более результативным будет использование именно традиционных методов. Однако как метод разведочного анализа или как последнее средство, когда отказывают все традиционные методы, Деревья классификации, по мнению многих исследователей, не знают себе равных.

Анализ главных компонент и классификация. На практике часто возникает задача анализа данных большой размерности. Метод анализ главных компонент и классификация позволяет решить эту задачу и служит для достижения двух целей:
– уменьшение общего числа переменных (редукция данных) для того, чтобы получить «главные» и «некоррелирующие» переменные;
– классификация переменных и наблюдений, при помощи строящегося факторного пространства.
Метод имеет сходство с факторным анализом в постановочной части решаемых задач, но имеет ряд существенных отличий:
– при анализе главных компонент не используются итеративные методы для извлечения факторов;
– наряду с активными переменными и наблюдениями, используемыми для извлечения главных компонент, можно задать вспомогательные переменные и/или наблюдения; затем вспомогательные переменные и наблюдения проектируются на факторное пространство, вычисленное на основе активных переменных и наблюдений;
– перечисленные возможности позволяют использовать метод как мощное средство для классификации одновременно переменных и наблюдений.
Решение основной задачи метода достигается созданием векторного пространства латентных (скрытых) переменных (факторов) с размерностью меньше исходной. Исходная размерность определяется числом переменных для анализа в исходных данных.

Многомерное шкалирование. Метод можно рассматривать как альтернативу факторному анализу, в котором достигается сокращение числа переменных, путем выделения латентных (непосредственно не наблюдаемых) факторов, объясняющих связи между наблюдаемыми переменными. Цель многомерного шкалирования – поиск и интерпретация латентных переменных, дающих возможность пользователю объяснить сходства между объектами, заданными точками в исходном пространстве признаков. Показателями сходства объектов на практике могут быть расстояния или степени связи между ними. В факторном анализе сходства между переменными выражаются с помощью матрицы коэффициентов корреляций. В многомерном шкалировании в качестве исходных данных можно использовать произвольный тип матрицы сходства объектов: расстояния, корреляции и т.д. Несмотря на то, что имеется много сходства в характере исследуемых вопросов, методы многомерное шкалирование и факторный анализ имеют ряд существенных отличий. Так, факторный анализ требует, чтобы исследуемые данные подчинялись многомерному нормальному распределению, а зависимости были линейными. Многомерное шкалирование не накладывает таких ограничений, оно может быть применимо, если задана матрица попарных сходств объектов. В терминах различий получаемых результатов факторный анализ стремится извлечь больше факторов – латентных переменных по сравнению с многомерным шкалированием. Поэтому многомерное шкалирование часто приводит к проще интерпретируемым решениям. Однако более существенно то, что метод многомерное шкалирование можно применять к любым типам расстояний или сходств, в то время как факторный анализ требует, чтобы в качестве исходных данных была использована корреляционная матрица переменных или по файлу исходных данных сначала была вычислена матрица корреляций. Основное предположение многомерного шкалирования заключается в том, что существует некоторое метрическое пространство существенных базовых характеристик, которые неявно и послужили основой для полученных эмпирических данных о близости между парами объектов. Следовательно, объекты можно представить как точки в этом пространстве. Предполагают также, что более близким (по исходной матрице) объектам соответствуют меньшие расстояния в пространстве базовых характеристик. Поэтому, многомерное шкалирование – это совокупность методов анализа эмпирических данных о близости объектов, с помощью которых определяется размерность пространства существенных для данной содержательной задачи характеристик измеряемых объектов и конструируется конфигурация точек (объектов) в этом пространстве. Это пространство («многомерная шкала») аналогично обычно используемым шкалам в том смысле, что значениям существенных характеристик измеряемых объектов соответствуют определенные позиции на осях пространства. Логику многомерного шкалирования можно проиллюстрировать на следующем простом примере. Предположим, что имеется матрица попарных расстояний (т.е. сходства некоторых признаков) между некоторыми городами. Анализируя матрицу, надо расположить точки с координатами городов в двумерном пространстве (на плоскости), максимально сохранив реальные расстояния между ними. Полученное размещение точек на плоскости впоследствии можно использовать в качестве приближенной географической карты. В общем случае многомерное шкалирование позволяет таким образом расположить объекты (города в нашем примере) в пространстве некоторой небольшой размерности (в данном случае она равна двум), чтобы достаточно адекватно воспроизвести наблюдаемые расстояния между ними. В результате можно измерить эти расстояния в терминах найденных латентных переменных. Так, в нашем примере можно объяснить расстояния в терминах пары географических координат Север/Юг и Восток/Запад.

Моделирование структурными уравнениями (причинное моделирование). Наметившийся в последнее время прогресс в области многомерного статистического анализа и анализа корреляционных структур, объединенный с новейшими вычислительными алгоритмами, послужил отправной точкой для создания новой, но уже получившей признание техники моделирования структурными уравнениями (SEPATH). Эта необычайно мощная техника многомерного анализа включает методы из различных областей статистики, множественная регрессия и факторный анализ получили здесь естественное развитие и объединение.
Объектом моделирования структурными уравнениями являются сложные системы, внутренняя структура которых не известна («черный ящик»). Наблюдая параметры системы при помощи SEPATH, можно исследовать ее структуру, установить причинно-следственные взаимосвязи между элементами системы.
Постановка задачи структурного моделирования выглядит следующим образом. Пусть имеются переменные, для которых известны статистические моменты, например, матрица выборочных коэффициентов корреляции или ковариации. Такие переменные называются явными. Они могут быть характеристиками сложной системы. Реальные связи между наблюдаемыми явными переменными могут быть достаточно сложными, однако предполагаем, что имеется некоторое число скрытых переменных, которые с известной степенью точности объясняют структуру этих связей. Таким образом, с помощью латентных переменных строится модель связей между явными и неявными переменными. В некоторых задачах латентные переменные можно рассматривать как причины, а явные – как следствия, поэтому, такие модели называются причинными. Допускается, что скрытые переменные, в свою очередь, могут быть связаны между собой. Структура связей допускается достаточно сложной, однако тип ее постулируется – это связи, описываемые линейными уравнениями. Какие-то параметры линейных моделей известны, какие-то нет, и являются свободными параметрами.
Основная идея моделирования структурными уравнениями состоит в том, что можно проверить, связаны ли переменные Y и X линейной зависимостью Y = aX, анализируя их дисперсии и ковариации. Эта идея основана на простом свойстве среднего и дисперсии: если умножить каждое число на некоторую константу k, среднее значение также умножится на k, при этом стандартное отклонение умножится на модуль k. Например, рассмотрим набор из трех чисел 1, 2, 3. Эти числа имеют среднее, равное 2, и стандартное отклонение, равное 1. Если умножить все три числа на 4, то легко посчитать, что среднее значение будет равно 8, стандартное отклонение – 4, а дисперсия – 16. Таким образом, если есть наборы чисел X и Y, связанные зависимостью Y = 4X, то дисперсия Y должна быть в 16 раз больше, чем дисперсия X. Поэтому можно проверить гипотезу о том, что Y и X связаны уравнением Y = 4X, сравнением дисперсий переменных Y и X. Эта идея может быть различными способами обобщена на несколько переменных, связанных системой линейных уравнений. При этом правила преобразований становятся более громоздкими, вычисления более сложными, но основной смысл остается прежним – можно проверить, связаны ли переменные линейной зависимостью, изучая их дисперсии и ковариации.

Методы анализа выживаемости. Методы анализа выживаемости первоначально были развиты в медицинских, биологических исследованиях и страховании, но затем стали широко применяться в социальных и экономических науках, а также в промышленности в инженерных задачах (анализ надежности и времен отказов). Представьте, что изучается эффективность нового метода лечения или лекарственного препарата. Очевидно, наиболее важной и объективной характеристикой является средняя продолжительность жизни пациентов с момента поступления в клинику или средняя продолжительность ремиссии заболевания. Для описания средних времен жизни или ремиссии можно было бы использовать стандартные параметрические и непараметрические методы. Однако в анализируемых данных есть существенная особенность – могут найтись пациенты, которые в течение всего периода наблюдения выжили, а у некоторых из них заболевание все еще находится в стадии ремиссии. Также может образоваться группа больных, контакт с которыми был потерян до завершения эксперимента (например, их перевели в другие клиники). При использовании стандартных методов оценки среднего эту группу пациентов пришлось бы исключить, тем самым, потеряв с трудом собранную важную информацию. К тому же большинство этих пациентов являются выжившими (выздоровевшими) в течение того времени, которое их наблюдали, что свидетельствует в пользу нового метода лечения (лекарственного препарата). Такого рода информация, когда нет данных о наступлении интересующего нас события, называется неполной. Если есть данные о наступлении интересующего нас события, то информация называется полной. Наблюдения, которые содержат неполную информацию, называются цензурированными наблюдениями. Цензурированные наблюдения типичны, когда наблюдаемая величина представляет время до наступления некоторого критического события, а продолжительность наблюдения ограничена по времени. Использование цензурированных наблюдений составляет специфику рассматриваемого метода – анализа выживаемости. В данном методе исследуются вероятностные характеристики интервалов времени между последовательным возникновением критических событий. Такого рода исследования называются анализом длительностей до момента прекращения, которые можно определить как интервалы времени между началом наблюдения за объектом и моментом прекращения, при котором объект перестает отвечать заданным для наблюдения свойствам. Цель исследований – определение условных вероятностей, связанных с длительностями до момента прекращения. Построение таблиц времен жизни, подгонка распределения выживаемости, оценивание функции выживания с помощью процедуры Каплана – Мейера относятся к описательным методам исследования цензурированных данных. Некоторые из предложенных методов позволяют сравнивать выживаемость в двух и более группах. Наконец, анализ выживаемости содержит регрессионные модели для оценивания зависимостей между многомерными непрерывными переменными со значениями, аналогичными временам жизни.
Общие модели дискриминантного анализа. Если не выполняются условия применимости дискриминантного анализа (ДА) – независимые переменные (предикторы) должны быть измерены как минимум в интервальной шкале, их распределение должно соответствовать нормальному закону, необходимо воспользоваться методом общие модели дискриминантного анализа (ОДА). Метод имеет такое название, потому что в нем для анализа дискриминантных функций используется общая линейная модель (GLM). В этом модуле анализ дискриминантных функций рассматривается как общая многомерная линейная модель, в которой категориальная зависимая переменная (отклик) представляется векторами с кодами, обозначающими различные группы для каждого наблюдения. Метод ОДА имеет ряд существенных преимуществ перед классическим дискриминантным анализом. Например, не устанавливается никаких ограничений на тип используемого предиктора (категориальный или непрерывный) или на тип определяемой модели, возможен пошаговый выбор предикторов и выбор наилучшего подмножества предикторов, в случае наличия в файле данных кросс-проверочной выборки выбор наилучшего подмножества предикторов можно провести на основе долей ошибочной классификации для кросс-проверочной выборки и т.д.

Временные ряды. Временные ряды – это наиболее интенсивно развивающееся, перспективное направление математической статистики. Под временным (динамическим) рядом подразумевается последовательность наблюдений некоторого признака Х (случайной величины) в последовательные равноотстоящие моменты t. Отдельные наблюдения называются уровнями ряда и обозначаются хt, t = 1, …, n. При исследовании временного ряда выделяются несколько составляющих:
x t =u t +y t +c t +e t , t = 1, …, n,
где u t – тренд, плавно меняющаяся компонента, описывающая чистое влияние долговременных факторов (убыль населения, уменьшение доходов и т.д.); – сезонная компонента, отражающая повторяемость процессов в течение не очень длительного периода (дня, недели, месяца и т.д.); сt – циклическая компонента, отражающая повторяемость процессов в течение длительных периодов времени свыше одного года; t – случайная компонента, отражающая влияние не поддающихся учету и регистрации случайных факторов. Первые три компоненты представляют собой детерминированные составляющие. Случайная составляющая образована в результате суперпозиции большого числа внешних факторов, оказывающих каждый в отдельности незначительное влияние на изменение значений признака Х. Анализ и исследование временного ряда позволяют строить модели для прогнозирования значений признака Х на будущее время, если известна последовательность наблюдений в прошлом.

Нейронные сети. Нейронные сети представляют собой вычислительную систему, архитектура которой имеет аналогию с построением нервной ткани из нейронов. На нейроны самого нижнего слоя подаются значения входных параметров, на основании которых нужно принимать определенные решения. Например, в соответствии со значениями клинико-лабораторных показателей больного надо отнести его к той или иной группе по степени тяжести заболевания. Эти значения воспринимаются сетью как сигналы, передающиеся в следующий слой, ослабляясь или усиливаясь в зависимости от числовых значений (весов), приписываемых межнейронным связям. В результате на выходе нейрона верхнего слоя вырабатывается некоторое значение, которое рассматривается как ответ – отклик всей сети на входные параметры. Для того, чтобы сеть работала ее надо «натренировать» (обучить) на данных для которых известны значения входных параметров и правильные отклики на них. Обучение состоит в подборе весов межнейронных связей, обеспечивающих наибольшую близость ответов к известным правильным ответам. Нейронные сети могут быть использованы для классификации наблюдений.

Планирование экспериментов. Искусство располагать наблюдения в определенном порядке или проводить специально спланированные проверки с целью полного использования возможностей этих методов и составляет содержание предмета «планирование эксперимента». В настоящее время экспериментальные методы широко используются как в науке, так и в различных областях практической деятельности. Обычно основная цель научного исследования состоит в том, чтобы показать статистическую значимость эффекта воздействия определенного фактора на изучаемую зависимую переменную. Как правило, основная цель планирования экспериментов заключается в извлечении максимального количества объективной информации о влиянии изучаемых факторов на интересующий исследователя показатель (зависимую переменную) с помощью наименьшего числа дорогостоящих наблюдений. К сожалению, на практике, в большинстве случаев, недостаточное внимание уделяется планированию исследований. Собирают данные (столько, сколько могут собрать), а потом уже проводят статистическую обработку и анализ. Но сам по себе правильно проведенный статистический анализ недостаточен для достижения научной достоверности, поскольку качество любой информации, получаемой в результате анализа данных, зависит от качества самих данных. Поэтому планирование экспериментов находит все большее применение в прикладных исследованиях. Целью методов планирования экспериментов является изучение влияния определенных факторов на исследуемый процесс и поиск оптимальных уровней факторов, определяющих требуемый уровень течения данного процесса.

Карты контроля качества. В условиях современного мира чрезвычайно актуальным является проблема качества не только выпускаемой продукции, но и услуг оказываемых населению. От успешного решения этой важной проблемы в значительной степени зависит благополучие любой фирмы, организации или учреждения. Качество продукции и услуг формируется в процессе научных исследований, конструкторских и технологических разработок, обеспечивается хорошей организацией производства и услуг. Но изготовление продукции и оказание услуг независимо от их вида всегда связано с определенным непостоянством условий производства и предоставления. Это приводит к некоторой вариабельности признаков их качества. Поэтому, актуальными являются вопросы разработки методов контроля качества, которые позволят своевременно выявить признаки нарушения технологического процесса или оказания услуг. При этом, для достижения и поддержания высокого уровня качества, удовлетворяющего потребителя нужны методы, направленные не на устранение дефектов готовой продукции и несоответствий услуг, а на предупреждение и прогнозирование причин их появления. Контрольная карта – это инструмент, позволяющий отслеживать ход протекания процесса и воздействовать на него (с помощью соответствующей обратной связи), предупреждая его отклонения от предъявленных к процессу требований. Инструментарий карт контроля качества широко использует статистические методы, основанные на теории вероятностей и математической статистики. Применение статистических методов позволяет при ограниченных объемах анализируемых изделий с заданной степенью точности и достоверности судить о состоянии качества выпускаемой продукции. Обеспечивает прогнозирование, оптимальное регулирование проблем в области качества, принятие верных управленческих решений не на основе интуиции, а при помощи научного изучения и выявления закономерностей в накапливаемых массивах числовой информации. />/>/>/>/>/>/>/>/>/>/>/>/>/>/>/>/>/>/>/>/>