Критерии выбора программы моделирования эмуляции компьютерных сетей. Специализированные системы имитационного моделирования вычислительных сетей. Весовой коэфф., %

Цель работы:

  • 1. Ознакомление с приемами моделирования сетей с помощью ПО Cisco Packet Tracer.
  • 2. Получение навыков по построению и моделированию сетей с использованием концентраторов, коммутаторов, маршрутизаторов.
  • 3. Получение навыков использования команд ping, tracert, arp для контроля за состоянием вычислительной сети.

Теоретическая часть.

Описание Cisco Packet Tracer.

Cisco Packet Tracer - программный продукт, разработанный в рамках сетевых академий компанией Cisco и позволяющий проектировать сети, изучать сетевое оборудование, связи между ними и конфигурировать их.

Рисунок 1 - Основные компоненты программы Cisco Packet Tracer

  • 1- Рабочая область, где размещается оборудование для организации сети;
  • 2- Доступное оборудование (концентраторы, коммутаторы, маршрутизаторы, оконечные устройства);
  • 3- Кнопки управления объектами;
  • 4- Выбор между физической и логической рабочей областью. Особенностью Packet Tracer является то, что при переходе в физическую рабочую область можно рассмотреть созданную сеть на уровне от виртуального города до стойки. Переход на более низкий уровень - по щелчку мыши по объекту. Возврат - кнопка Back;
  • 5- Окно наблюдения и управления за передаваемыми пакетами;
  • 6- Переключение между режимами работы - режим реального времени и симуляции. В режиме симуляции все пакеты, пересылаемые внутри сети, отображаются графически (Рисунок 2). Эта возможность позволяет наглядно продемонстрировать, по какому интерфейсу в данный момент перемещается пакет, какой протокол используется и т.д. В данном режиме можно не только отслеживать используемые протоколы, но и видеть, на каком из семи уровней модели OSI данный протокол задействован, щелкнув мышью на квадрат в поле Info (Рисунок 3).

Рисунок 2 - Передача пакетов в режиме симуляции

Рисунок 3 - Уровни модели OSI в Cisco Packet Tracer

Запустить работу в режиме симуляции можно сформировав ping - запрос с помощью или и нажав на кнопку Play.

Каждое устройство может быть сконфигурировано в зависимости от своего назначения. Например, щелкнув на значок компьютера попадаем в область физических настроек, где приведен внешний вид оборудования и перечислены платы, которые можно добавить к устройству. Во вкладке Config (рисунок 4) приведены сетевые настройки устройства (IP, маска, шлюз, DNS - сервер).

Рисунок 4 - Сетевые настройки компьютера

Во вкладке Desktop приведены дополнительные возможности:

  • · IP Configuration - сетевые настройки
  • · Command Prompt - командная строка
  • · Терминал
  • · Браузер
  • · Электронная почта и другое.

Командная строка используется для проверки работоспособности сети, задания настроек и просмотра результатов. Основные команды при использовании:

· Ping - посылка эхо-запроса

Формат: Ping адрес_узла_назначения.

Может быть с расширениями: Ping -t адрес_узла_назначения - посылка эхо-запроса до тех пор пока не будет прервано командой Ctrl+C;

Ping -n count адрес_узла_назначения - посылка стольких эхо-запросов, сколько указано в count.

· Arp - а - просмотр arp-таблицы;

Arp - d -очистить arp-таблицу.

· Tracert - определение маршрута до узла назначения.

Формат: Tracert адрес_узла_назначения.

Протокол STP.

Spanning Tree Protocol -- сетевой протокол, работающий на втором уровне модели OSI. Основной задачей STP является приведение сети Ethernet с множественными связями к древовидной топологии, исключающей циклы пакетов. Происходит это путём автоматического блокирования избыточных в данный момент связей для полной связности портов. Протокол описан в стандарте IEEE 802.1D.

Протокол CDP.

Cisco Discovery Protocol -- протокол второго уровня, разработанный компанией Сisco Systems, позволяющий обнаруживать подключённое (напрямую или через устройства первого уровня) сетевое оборудование Сisco, его название, версию IOS и IP-адреса. Поддерживается многими устройствами компании, почти не поддерживается сторонними производителями.

Получаемая информация включает в себя типы подключённых устройств, интерфейсы маршрутизатора, к которым подключены соседние устройства, интерфейсы, использующиеся для создания соединений, а также модели устройств.

Протокол ICMP.

Internet Control Message Protocol - протокол управляющих сообщений.

Используя ICMP, узлы и маршрутизаторы, связывающиеся по протоколу IP, могут сообщать об ошибках и обмениваться ограниченной управляющей информацией и сведениями о состоянии.

Каждое сообщение протокола ICMP передается по сети внутри пакета IP (Рисунок 5). Пакеты IP с сообщениями ICMP маршрутизируются точно так же, как и любые другие пакеты, без приоритетов, поэтому они также могут теряться. Кроме того, в загруженной сети они могут вызывать дополнительную загрузку маршрутизаторов. Для того, чтобы не вызывать лавины сообщения об ошибках, потери пакетов IP, переносящие сообщения ICMP об ошибках, не могут порождать новые сообщения ICMP.

Рисунок 5 - Формат пакета ICPM

Статическая и динамическая маршрутизация.

Маршрутизация -- процесс определения маршрута следования информации в сетях связи. Маршруты могут задаваться административно (статические маршруты), либо вычисляться с помощью алгоритмов маршрутизации, базируясь на информации о топологии и состоянии сети, полученной с помощью протоколов маршрутизации (динамические маршруты). После определения маршрута следования пакета необходимо отослать информацию об этом каждому транзитному устройству. Каждое сообщение обрабатывается и заносится в таблицу маршрутизации, в которой указывается интерфейс, по которому устройство должно передавать данные, относящиеся к конкретному потоку.

Протокол RIP.

Routing Information Protocol - протокол маршрутной информации. Используется для изменения записей в таблице маршрутизации в автоматическом режиме. Для измерения расстояния до пункта назначения чаще всего используется количество хопов - количество промежуточных маршрутизаторов, которые нужно преодолеть пакету до пункта назначения (хотя могут быть и другие варианты - надежность сетей, задержки, пропускная способность). Роутеры отсылают свою таблицу маршрутизации соседям, получают от них подобные сообщения и обрабатывают их. Если новая информация имеет лучшее значение метрики, то старая запись замещается новой, и маршрутизатор снова отсылает пакет RIP своим соседям, ждет ответа и обрабатывает информацию.

Протокол ARP.

Любое устройство, подключенное к локальной сети, имеет уникальный физический сетевой адрес, заданный аппаратным образом. 6-байтовый Ethernet-адрес выбирает изготовитель сетевого интерфейсного оборудования из выделенного для него по лицензии адресного пространства. Если у машины меняется сетевой адаптер, то меняется и ее Ethernet-адрес.

4-байтовый IP-адрес задает менеджер сети с учетом положения машины в сети Интернет. Если машина перемещается в другую часть сети Интернет, то ее IP-адрес должен быть изменен. Преобразование IP-адресов в сетевые выполняется с помощью arp-таблицы. Каждая машина сети имеет отдельную ARP-таблицу для каждого своего сетевого адаптера.

Преобразование адресов выполняется путем поиска в таблице. Эта таблица, называемая ARP-таблицей, хранится в памяти и содержит строки для каждого узла сети. В двух столбцах содержатся IP- и Ethernet-адреса. Если требуется преобразовать IP-адрес в Ethernet-адрес, то ищется запись с соответствующим IP-адресом.

ARP-таблица необходима потому, что IP-адреса и Ethernet-адреса выбираются независимо, и нет какого-либо алгоритма для преобразования одного в другой.

Существуют следующие типы сообщений ARP: запрос ARP (ARP request) и ответ ARP (ARP reply). Система-отправитель при помощи запроса ARP запрашивает физический адрес системы-получателя. Ответ (физический адрес узла-получателя) приходит в виде ответа ARP.

Перед тем как передать пакет сетевого уровня через сегмент Ethernet, сетевой стек проверяет кэш ARP, чтобы выяснить, не зарегистрирована ли в нём уже нужная информация об узле-получателе. Если такой записи в кэше ARP нет, то выполняется широковещательный запрос ARP. После этого отправитель обновит свой кэш ARP и будет способен передать информацию получателю.

Узел, которому нужно выполнить отображение IP-адреса на локальный адрес, формирует ARP запрос, вкладывает его в кадр протокола канального уровня, указывая в нем известный IP-адрес, и рассылает запрос широковещательно.

Все узлы локальной сети получают ARP запрос и сравнивают указанный там IP-адрес с собственным.

В случае их совпадения узел формирует ARP-ответ, в котором указывает свой IP-адрес и свой локальный адрес и отправляет его уже направленно, так как в ARP запросе отправитель указывает свой локальный адрес.

Моделирование компьютерной сети

Моделирование компьютерной сети является средством системного анализа и должно базироваться на системном подходе.

Основные положения системного анализа

Современная методология исследований рассматривает любой объект как систему. Под системой будем понимать определенное во времени и пространстве множество элементов с известными свойствами и упорядоченными связями между элементами, ориентированными на выполнение главной задачи данного множества.

С системой связан целый ряд понятий, таких как целостность, сложность, структура, цель, подсистема, элемент, свойства, связь, состояние, внешняя среда.

Целостность устанавливает, что познание системы достигается через единство изучения всех ее элементов и поэтому система ни коем случае не должна рассматриваться как их простая сумма. Вместе с тем при анализе систем допускается самостоятельное изучение ее отдельных частей (декомпозиция) при условии их функциональной независимости.

Сложность предписывает учитывать при изучении системы влияние на нее как внешней среды, так и внутренних факторов.

Структура отражает наиболее существенные взаимоотношения между элементами системы, которые обеспечивают существование системы и ее основные свойства и мало меняются от происходящих в системе изменений. Структура системы зависит от глубины отображения объекта, от цели созданий системы, и одна и та же система может быть представлена несколькими структурами.

Цель – желаемое состояние системы. Оценка степени достижения системой поставленной цели производится через критерии цели, которые определяют соответствие состояния системы поставленной цели.

Подсистема – это относительно независимая часть системы, включающая совокупность взаимосвязанных элементов.

Элемент представляет собой условно неделимую часть системы. Степень детализации системы через подсистемы и элементы определяется целями исследования. Подсистема и элемент могут выполнять собственные цели и задачи, однако их функционирование всегда направлено на выполнение главной цели (задачи) системы.

Теоретические основы моделирования лвс

Основное требование к ЛВС – это обеспечение всем пользователям доступа к разделяемым ресурсам сети с заданным качеством обслуживания (QoS – Quality of Service). Одним из основных критериев качества обслуживания является производительность . В качестве показателей производительности используются время реакции, пропускная способность и задержка передачи. Время реакции – это интервал времени между возникновением запроса пользователя к сетевой службе и получением ответа. Время реакции зависит от загруженности сегментов среды передачи и активного сетевого оборудования (коммутаторов, маршрутизаторов, серверов). Пропускная способность – это объем данных, передаваемых в единицу времени (бит/с, пакетов/с). Пропускная способность составного пути в сети определяется самым медленным элементом (как правило, это маршрутизатор). Задержка передачи – это интервал времени между моментом поступления пакета на вход сетевого устройства и моментом появления его на выходе устройства.

Для оптимизации производительности ЛВС используют методы и средства измерения, анализа и моделирования. Клиент-серверная архитектура и распределенная обработка данных в ЛВС усложняют задачи моделирования.

Аналитическое моделирование ЛВС основано на использовании моделей систем массового обслуживания (СМО) и, как правило, связано со значительными упрощениями. Тем не менее результаты аналитического исследования могут быть очень ценными, даже если они не учитывают всех деталей реальной ЛВС. Такие модели позволяют достаточно быстро получить приближенную инженерную оценку влияния характеристик оборудования и программного обеспечения на показатели производительности ЛВС.

Модель ЛВС строится из отдельных блоков, каждый из которых представляет один узел или канал передачи ЛВС. Блок состоит из буферного накопителя пакетов и обслуживающего элемента (рис.1). На вход блока поступает поток пакетов, характеризуемый функцией распределения интервалов времени между моментами поступления пакетов A (t ). Интенсивность входного потока пакетов – это среднее число пакетов, поступающих на вход блока в единицу времени. Обратная величина 1/ – это среднее значение интервала между моментами поступления пакетов, которое о пределяется интегралом

И
нтенсивность обслуживания
блока – это  среднее число обрабатываемых пакетов в единицу времени. Обратная величина 1/ – это среднее значение длительности обслуживания пакета, которое определяется интегралом

где B (t ) – функция распределения длительности обслуживания. Отношение  =  /  называется коэффициентом загрузки блока . Реальный блок имеет буфер ограниченной емкости r (см. рис.2,б). Идеализированный модуль может иметь неограниченный по емкости буфер (см. рис.2,а).

Блок M / M /1. Рассмотрим самую простую модель типа M /M /1 (один обслуживающий элемент, неограниченная емкость буфера, экспоненциальные законы распределения интервалов времени между моментами поступления пакетов и времени обслуживания, дисциплина обслуживания FIFO) для блока, изображенного на рис.1,а. В этом случае A (t )=1– e –  t , B (t )=1–e –  t , среднее время задержки пакета в блоке

Среднее время ожидания в очереди W = T – (1/), а среднее число пакетов в очереди L W = L – .

Б
лок
M / G /1. Эта модель отличается от модели типа M /M /1 только тем, что распределение времени обслуживания B (t ) может быть произвольном. Рассмотрим случай, когда распределение B (t ) задается для блока двумя параметрами: интенсивностью обслуживания  и дисперсией времени обслуживания

Тогда среднее время нахождения пакета в очереди W = (1 + v 2) W П, где W П = (/2)(1–) –1 – время нахождения пакета в очереди при постоянной длительности обслуживания; v 2 =  2 D квадрат коэффициента вариации времени обслуживания. Для постоянного времени обслуживания v =0, а для экспоненциального распределения времени обслуживания v =1. Для модели M /G /1 оценка времени пребывания пакета в блоке T = W + (1/), длины очереди в буфере L W =W и общего числа пакетов в блоке L = L W + .

Блоки M / M /1/ r и M / G /1/ r. Модель типа M /G /1/r для блока, изображенного на рис.1,б, отличается от модели M /G /1 тем, что емкость буфера ограничена величиной r (предполагается, что обрабатываемый пакет находится также в буфере). Эта модель характеризуется вероятностью потери пакета (отказа в обслуживании)

где (r ,)=2r /(1+ 2), причем коэффициент вариации. Абсолютная пропускная способность блока M /G /1/r

 АБС = (1– P ОТК).

При = 1 формула дает точное значение P ОТК для экспоненциального распределения B (t ), т.е. для блоков M /M /1/r.

Сеть блоков M / M /1. Модель ЛВС можно представить в виде сети блоков (сети массового обслуживания – СеМО ), причем многие блоки содержат буферы. Простые аналитические формулы можно получить для открытой сети блоков M /M /1, пример которой представлен на рис.2.

В этой сети, состоящей из трех блоков, три входных потока пакетов, имеющих интенсивности  1 ,  2 и  3 соответственно. Требуется оценить среднюю задержку пакетов для каждого потока. Очереди в этой сети можно рассматривать по отдельности , причем число пакетов в блоке j =1…3 оценивается по формуле (1), а именно

L j =  j / ( j –  j ).

Интенсивность  j потока на входе каждого блока равна сумме интенсивностей элементарных потоков, поступающих на блок в соответствии с рис.3:

 1 =  1 +  2 ,  2 =  1 +  2 +  3 ,  3 =  2 +  3 .

Можно показать , что средняя задержка пакета в сети

де n – число блоков в системе;  – сумма интенсивностей всех потоков, входящих в систему. Для отдельного потока i средняя задержка пакета в сети

,

где J i – подмножество блоков, участвующих в обработке потока i . В рассматриваемом примере J 1 ={1, 2, 3}, J 2 ={1, 2} и J 3 ={2, 3}.

Формула (4) верна при следующих предположениях.

 Закон распределения интервалов времени между моментами поступления пакетов A (t ) для отдельных потоков экспоненциальный, причем потоки являются независимыми процессами. Это предположение может быть выполнено на практике.

 Закон распределения времени обслуживания B (t ) также экспоненциальный, причем процессы обслуживания в каждой очереди независимы. Это предположение не может быть выполнено, поскольку время обслуживания пакета пропорционально его длине, и, следовательно, нельзя говорить о независимости времен обслуживания в очередях.

Однако моделирование показывает , что применение формулы (4) дает приемлемую оценку средней задержки пакета в сети.

Имитационное моделирование позволяет имитировать поведение реальной ЛВС. Имеется много программных средств для имитационного моделирования компьютерных сетей (GPSS, COMNET III фирмы Caci Products Co., BONeS Designer фирмы Cadence Inc., OPNET фирмы Modeler Mil3 Inc., ns2 и др.).

Литература

    Анкудинов Г.И., Стрижаченко А.И. Сети ЭВМ и телекоммуникации (архитектура и протоколы): Учеб.пособие. – 2-е изд. СПб.: СЗТУ, 2003. 72с.

    Олифер В.Г., Олифер Н.А. Компьютерные сети. Принципы, технологии, протоколы. – СПб.: Питер, 2002. – 672 с.

    Компьютерные сети: Учебный курс / Пер. с англ.– М.: ТОО «Channel Trading Ltd», 1997.– 696 с.

    Советов Б.Я., Яковлев С.А. Построение сетей интегрального обслуживания. – Л.: Машиностроение, 1990. – 332 с.

    Англо-русский словарь по сетям и сетевым технологиям / Сост. С.Б.Орлов. – М.: «Солон», 1997. – 301 с.

    Кульгин М. Технологии корпоративных сетей: Энциклопедия. – СПб.: Изд-во «Питер», 2000. – 704 с.

    Гук М. Аппаратные средства локальных сетей: Энциклопедия.– СПб.: Изд-во «Питер», 2000. – 576 с.

    Ногл М. TCP/IP: Учебник.- М.: ДМК Пресс, 2001. 480 с.

    Новиков Ю.В., Кондратенко С.В. Локальные сети: архитектура, алгоритмы, проектирование. М.: Изд-во ЭКОМ, 2000. 312 с.

    Уолрэнд Дж. Телекоммуникационные и компьютерные сети: Вводный курс/ Пер. с англ.- М.: Постмаркет, 2001. 480 с.

    Томашевский В., Жданова Е. Имитационное моделирование в среде GPSS.- М.: Бестселлер, 2003.- 416 с.

    Советов Б.Я., Яковлев С.А. Моделирование систем: Учеб. пособие. - М.: Высш. шк., 1985.- 271 с.

    Петухов О.А. Модели систем массового обслуживанияю: Учеб. пособие.- Л.: СЗПИ, 1989.- 86 с.

Примеры использования имитационного

моделирования

Обеспечение точности и достоверности

результатов моделирования

Число испытаний N определяет точность результатов моделирования. Пусть необходимо определить точность оценки параметраx случайной величины x. Вероятность

P(a –x < ) = ,

где a – точное значение параметра, называется достоверностью оценки , а величина  – абсолютной точностью оценки .

Величина  0 =  / a называется относительной точностью оценки . Тогда достоверность оценки

P(a –x  / a <  0) = .

Число реализаций для оценки среднего значения случайной величины

Для оценки среднего значения используем формулу


.

В соответствии с центральной предельной теоремой при больших N величинаx распределена по нормальному закону с математическим ожиданием a и дисперсией  2 /( N – 1). Тогда

и требуемое число реализаций

.

Величина t  берется для заданной достоверности  из таблицы нормального распределения.

Поскольку дисперсия оцениваемой величины неизвестна, необходимо провести 50-100 предварительных испытаний и оценить величину .

Для дисперсии  2 точность оценки
, где  4 – центральный момент четвертого порядка случайной величины x. Для нормального распределения  4 =3 4 .

Пример 1.

Дано:

    структурная схема вычислительной системы (обеспечивающая часть локальной информационной технологии);

    пакетный режим работы вычислительной системы;

    интенсивность входного потока заданий  = 0.2 (экспон. распределение);

    время решения задания в вычислительной системе не должно превышать

T доп = 30 с для 90 % заданий;

    математическая модель вычислительной системы в виде однопотоковой однолинейной системы массового обслуживания типа M/M/1/ (рис. 1).

Н айти:

    значение параметра – среднюю интенсивность обслуживания заявок в приборе , при которой время пребывания любой заявки в СМО t не будет превышать заданной величины (30 с) для 90 % заявок:

Р{ t 30} = 0.9

    по найденному  вычислить системные характеристики СМО;

    по найденному  определить подходящий тип вычислительной системы и ее показатели производительности, обеспечивающие требуемое время решения задачи.

Ограничения:

Решение:

Уравнение (1) определяет значение функции распределения вероятностей (ФРВ) случайной величины t в точке 28.5, равное 0.9. Для системы M/M/1/ (и только для нее) известно аналитическое выражение ФРВ t. Тогда для отыскания неизвестных  и  можно составить систему нелинейных уравнений:

Решение нелинейной системы уравнений (2):

-( – )30 = ln 0.1,

 = - ln 0.1/30+0.2 = 0.276753,

 = / = 0.2 / 0.276753 = 0.722.

Выберем  = /0.7 = 0.2/0.7 = 0.285714.

Тогда расчетные значения среднего времени задержки пакета в СМО:

T = 1/ ( – ) = 11.67 с.

Среднее число транзактов в СМО:

L =  / ( – ) = 2.334.

Среднее число транзактов в очереди:

L W = L –  = 2.334 – 0.722 = 1.612.

Для выбора подходящей вычислительной системы (сервера) зададим параметры пакета программ для обработки. Пусть любой пакет содержит 100 программ по 10000 операторов каждая. Тогда общий объем пакета в операторах составит Q=10 6 операций. При этом требуемая производительность вычислительной системы (сервера) будет равна V=Q=10 6 0.285714 300 тыс. оп./с. Для определения подходящей вычислительной системы (сервера) воспользуемся данными таблицы 1.

Таблица 1. Производительность процессоров фирмы INTEL

Тип процессора

Тактовая частота, МГц

Производительность,

млн. оп./с

Из перечня процессоров заданным требованиям удовлетворяет младшая модель процессора - 8086.

Полученные по математическим моделям результаты не всегда адекватно отражают реальную работу вычислительной системы заданной структуры, так как расчетные аналитические формулы выведены и верны лишь при упрощающих допущениях (или предположениях) относительно структуры, распределениях потоков и обслуживания и других. Альтернативным подходом к решению поставленной задачи является непосредственная имитация на ПЭВМ (имитационное моделирование) процесса выполнения пакета в вычислительной системе заданной структуры с использованием системы моделирования GPSS.

EXPON FUNCTION RN1,C24

TABLA TABLE M1,0,3500000,15

GENERATE 5000000,FN$EXPON 1/ =1/ 0.2= 5.0

* 1 единица модедьного времени = 1 мкс

ADVANCE 3500000,FN$EXPON 1/ =3.5 с

Результаты моделирования (см. листинг 1) сведены в табл.2.

Таблица 2

(устройство)

Параметр

Значение

Интерпретация

(коэффициент загрузки)

AVERAGE TIME/XACT

(среднее время обслуживания на транзакт)

T S = 1/ =

(очередь)

AVERAGE CONTENTS

(средняя длина)

L W = 1.634

MAXIMUM CONTENTS

(макс. длина)

L W макс =29

AVERAGE TIME/UNIT

(среднее время ожидания)

W =8.261344 с

(табличные данные для полного времени в СМО)

(среднее время в СМО на 1 транзакт)

T = 11.759 с

STANDARD DEVIATION

(среднеквадратическое

отклонение времени в СМО на 1 транзакт)

Результаты моделирования хорошо совпадают с расчетными значениями.

Пример 2.

Рассмотрим решение задачи для диалогового режима работы локальной вычислительной системы.

Дано:

    режим работы - диалоговый;

    время реакции диалогового абонента (время обдумывания) 1/=10с;

    время решения задания (время ответа на запрос с терминала) не должно превышать T d доп =1 с для 90 % заданий;

    число пользователей n =20;

    математическая модель вычислительной системы в виде замкнутой сети массового обслуживания (рис. 2).

Р ис. 2

В этой модели постоянно циркулируют n заявок (транзактов).

Найти:

    значение параметров сети массового обслуживания  , при которых

t T d доп 1 c для 90 % диалоговых заявок, т.е.

P{ t  1 c } = 0.9 ;

    по найденным  и  вычислить системные и сетевые характеристики СеМО;

    определить подходящий тип вычислительной системы и ее показатели производительности, обеспечивающие требуемое время ответа на запрос с терминала.

Ограничения:

Решение:

Для решения задачи используется приближенный метод, основанный на декомпозиции вычислительной системы на подсистему обработки и терминальную подсистему (и их “независимом” рассмотрении) с последующим балансом потоков в этих подсистемах. Тогда для отыскания неизвестных  можно составить систему уравнений:

1 – e - ( – ) Td доп =P

Из первого уравнения

Для P = 0.9, T d доп = 1 с, 1/=10с, n =20 получаем:

 = 20 / (10 – 1 / ln (1–0.9)) = 2.09080,

 =  - ln(1–P ) / T d доп = 2.09080 – ln (1–0.9) / 1 = 4.39339,

 =  /  = 0.475897 – коэффициент загрузки.

Расчет можно несколько упростить, если учесть, что T d доп T d /2 (для P = 0.9), где T d =1/( – ) - среднее время ответа. Тогда T d 2T d доп и

.  20/(10-2*1) = 2.5.

Программа моделирования на языке GPSS/H (студенческая версия).

SPACE STORAGE 20

EXPON FUNCTION RN1,C24

0,0/.1,.104/.2,.222/.3,.355/.4,.509/.5,.69/.6,.915/

7,1.2/.75,1.38/.8,1.6/.84,1.85/.88,2.12/.9,2.3/

92,2.52/.94,2.81/.95,2.99/.96,3.2/.97,3.5/.98,3.9/

99,4.6/.995,5.3/.998,6.2/.999,7/.9998,8

QTIME QTABLE QU1,0,200,20

SYS0 ENTER SPACE

ADVANCE 10000000,FN$EXPON

ADVANCE 250000,FN$EXPON

TEST E X6,0,SYS0

Результаты моделирования для 4 значений  сведены в табл.3 (см. листинг 2 для  = 4 ).

Таблица 3

Результаты моделирования

T S + T w [с]

T S [с]

L W

L W МАКС

T w [с]

В этой таблице

T S – среднее время обработки запроса;

L W – среднее длина очереди;

L W МАКС – максимальная длина очереди;

T w – среднее время ожидания запроса в очереди;

T S + T w – среднее время ответа.

Для выбора подходящей вычислительной системы (сервера) следует выбрать вариант с

 = 4 или 5 .

Пример 3.

Рассмотрим решение задачи для смешанного режима работы локальной вычислительной системы, когда для одной группы абонентов модель вычислительной системы представляется замкнутой диалоговой СеМО (сети СМО), а для другой группы - разомкнутой СеМО.

Моделирование будущей сети является обязательной частью любого проекта информационно-телекоммуникационной сети.

Целями моделирования могут являться:

Определение оптимальной топологии;

Выбор сетевого оборудования;

Определение рабочих характеристик сети;

Проверка характеристик новых протоколов.

На модели можно проверить влияние всплесков загрузки, воздействие большого потока широковещательных запросов, что вряд ли кто-то может себе позволить в работающей сети.

Перечисленные задачи предъявляют различные требования к программам, моделирующим функционирование сети. При этом определение характеристик сети до того, как она будет введена в эксплуатацию, имеет первостепенное значение, т. к. позволяет отрегулировать характеристики локальной сети на стадии проектирования. Решение этой проблемы возможно путем аналитического или статистического моделирования.

Аналитическое моделирование сети представляет собой совокупность математических соотношений, связывающих между собой входные и выходные характеристики сети. При выводе таких соотношений приходится пренебрегать какими-то малосущественными деталями или обстоятельствами.

Симуляционное (статистическое) моделирование служит для анализа системы с целью выявления критических элементов сети. Этот тип моделирования используется также для предсказания будущих характеристик системы. Процесс моделирования включат в себя формирование модели, отладку моделирующей программы и проверку корректности выбранной модели. Последний этап обычно состоит из сравнения расчетных результатов с экспериментальными данными, полученными для реальной сети.

Возможны разные подходы к моделированию. Классический подход заключается в воспроизведении событий в сети как можно точнее и поэтапном моделировании последствий этих событий.

Другим подходом может стать метод, где для каждого логического сегмента (зоны столкновений) сначала моделируется очередь событий.

Полное моделирование сети с учетом рабочих приложений предполагает использование следующих характеристик:

Характеристики узла;

Характеристики соединений;

Используемые протоколы;

Характеристики отправляемых пакетов.

Характеристики протоколов:

Длина пакета, посылаемого каждым узлом (длина сообщения + длина адресной части + длина дополнительной присоединяемой информации);

Длина сообщения;

Временное распределение моментов посылки пакетов.

Структура описания каждого из узлов включает в себя:

Номер узла (идентификатор);

Код типа узла;

MAC-адрес;

IP-адрес;

Байт статуса (узел ведет передачу; до узла дошел чужой пакет;….);

Код используемого протокола (IPv4 или IPv6; TCP, UDP, ICMP и т.д.);

Объем входного/выходного буфера. Тип буфера (FIFO, LIFOит.д.).

В каждом из существующих способов моделирования есть свои недостатки. Осуществляя построение сети, необходимо помнить к каким результатам должна привести данная модель.

Для более детального анализа было решено использовать статистическое представление модели. Результаты, полученные с помощью моделирования всех процессов в сети, будут достаточным основанием для оценки качества построенной сети компании «Люкс». Данная модель предполагает моделирование процессов в сети при помощи специальных программных средств.

Прогрмамма моделирования PacketTrecer

PacketTracer - это программа, которая является эмулятором сети передачи данных. Позволяет делать работоспособные модели сети, настраивать (командами Cisco IOS) маршрутизаторы и коммутаторы, взаимодействовать между несколькими пользователями (через облако). Включает в себя серии маршрутизаторов Cisco 1800, 2600, 2800 и коммутаторов 2950, 2960, 3650. Кроме того есть серверы DHCP, HTTP, TFTP, FTP, рабочие станции, различные модули к компьютерам и маршрутизаторам, устройства WiFi, различные кабели. Программа позволяет успешно создавать даже сложные макеты сетей, проверять на работоспособность топологии.

Полностью собранная в эмуляторе и настроенная до полной работоспособности модель ЛВС предприятия представлена на рисунке 6.

Рисунок 6.Общая схема информационно-телекоммуникационной сети.

В серверной комнате находятся сервер баз данных и веб-сервер; маршрутизатор для обеспечения уровня магистрали и распределения, подключенный к Интернет провайдеру; коммутаторы уровня доступа, физически объединяющих 50 конечных пользователей в единую локальную сеть, а также сетевой принтер и точка доступа. Рабочие станции пользователей обозначены схематически. Маршрутизаторы подключаются к Интернет провайдеру по высокоскоростным линиям связи для обеспечения высокой скорости передачи данных. Каждый отдел компании определен в отдельную виртуальную локальную сеть, при помощи маршрутизаторов, что облегчает администрирование сети.

Сеть построена по топологии звезда. Трафик в сети используется для передачи данных между пользователями и файловыми серверами, а так же для передачи данных в сеть интернет. Доступ в интернет предоставляется с помощью технологии PAT, по предоставленным провайдером единому ip адресу.

Типы компьютерных сетей

Назначение компьютерной сети

Основное назначение компьютерных сетей - совместное использование ресурсов и осуществление интерактивной связи как внутри одной формы, так и за ее пределами. Ресурсы - это данные, приложения и периферийные устройства, такие, как внешний дисковод, принтер, мышь, модем или джойстик. Понятие итерактивной связи компьютеров подразумевается обмен сообщениями в реальном режиме времени.

Принтеры и другие периферийные устройства

До появления компьютерных сетей каждый пользователь должен был иметь свой принтер, плоттер и другие периферийные устройства. Чтобы совместно использовать принтер, существовал единственный способ- пересесть за компьютер, подключенный к этому принтеру.

Теперь сети позволяют целому ряду пользователей одновременно "владеть" данными и периферийными устройствами. Если нескольким пользователям надо распечатать документ, все они могут обратиться к сетевому принтеру.

Данные

До появления компьютерных сетей люди обменивались информацией примерно так:

передавали информацию устно (устная речь)

писали записки или письма (письменная речь)

записывали информацию на дискету, несли дискету к другому компьютеру и копировали в него данные

Компьютерные сети упрощают этот процесс, предоставляя пользователям доступ почти к любым типам данных.

Приложения

Сети создают отличные условия для унификации приложений (например, текстового процессора). Это значит, что на всех компьютерах в сети выполняются приложения одного типа и одной версии. Использование единого приложения поможет упростить поддержку всей сети. Действительно, проще изучить одно приложение, чем пытаться освоить сразу четыре или пять. Удобнее также иметь дело с одной версией приложения и настраивать компьютеры одинаковым образом.

СКС – основа компьтерной локальной сети (ЛВС)

СКС – основа локальной сети

Для работы организации требуется локальная сеть, объединяющая компьютеры, телефоны, периферийноое оборудование. Без коипьютерной сети можно обойтись. Только неудобно обмениваться файлами при помощи дискет, выстраиваться возле принтера, доступ в интернет реализовать через один компьютер. Решение этих проблем обеспечивает технология, обозначаемая сокращенно СКС.

Структурированная кабельная система это универсальная телекоммуникационная инфраструктура здания / комплекса зданий, обеспечивающая передачу сигналов всех типов, включая речевые, информационные, видео. СКС может быть установлена прежде, чем станут известны требования пользователей, скорость передачи данных, тип сетевых протоколов.

СКС создает основу компьютерной сети, интегрированной с телефонной сетью. Совокупность телекоммуникационного оборудования здания / комплекса зданий, соединенного с помощью структурированной кабельной системы, называют локальной сетью.

СКС или компьютерная плюс телефонная сеть

Структурированные кабельные системы обеспечивают длительный срок службы, сочетая удобство эксплуатации, качество передачи данных, надежность. Внедрение СКС создает основу повышения эффективности организации, снижения эксплуатационных расходов, улучшения взаимодействия внутри компании, обеспечения качества обслуживания клиентов.

Структурированная кабельная система строится таким образом, чтобы каждый интерфейс (точка подключения) обеспечивал доступ ко всем ресурсам сети. При этом на рабочем месте достаточно двух линий. Одна линия является компьютерной, вторая – телефонной. Линии взаимозаменяемы. Кабели соединяют ТР рабочих мест с портами распределительных пунктов. Распределительные пункты объединяют магистральными линиями по топологии «иерархическая звезда».

СКС является интегрированной системой. Сравним СКС с устаревшей моделью компьютерная плюс телефонная сеть. Ряд преимуществ является очевидным.

интегрированная локальная сеть позволяет передавать разнотипные сигналы;

СКС обеспечивает работу нескольких поколений компьютерных сетей;

интерфейсы СКС позволяют подключать любое оборудование локальных сетей и речевых приложений;

СКС реализует большой диапазон скорости передачи данных от 100 Кбит/сек речевых приложений до 10 Гбит/сек информационных приложений;

администрирование СКС сокращает трудозатраты обслуживания локальной сети благодаря простоте эксплуатации;

компьютерная сеть допускает одновременное использование разнотипных сетевых протоколов;

стандартизация плюс конкуренция рынка СКС обеспечивают снижение цен комплектующих;

локальная сеть позволяет реализовать свободу перемещения пользователей без изменения персональных данных (адресов, телефонных номеров, паролей, прав доступа, классов обслуживания);

администрирование СКС обеспечивает прозрачность компьютерной и телефонной сети – все интерфейсы СКС промаркированы и докуменированы. Работа организация не зависит от сотрудника-монополиста соединений телефонной сети.

Надежная долговечная СКС является фундаментом локальной сети. Однако всякое достоинство имеет обратную сторону. Стандарты СКС рекомендуют избыточность количественных параметров системы, что влечет существенные единовременные затраты. Зато можно забыть о кошмаре перманентного ремонта действующего офиса для наращивания компьютерной сети под текущие потребности.

Стандарты СКС

Стандарты определяют структуру СКС, рабочие параметры конструктивных элементов, принципы проектирования, правила монтажа, методику измерения, правила администрирования, требования телекоммуникационного заземления.

Администрирование СКС включает маркировку портов, кабелей, панелей, шкафов, других элементов, а также систему записей, дополняемую ссылками. Вместе с продуманной организацией кабелей, заложенной на этапе создания СКС, система администрирования позволяет поддерживать хорошую организацию локальной сети. Стандарты СКС 2007 года считают наличие администрирования одним из условий соответствия СКС требованиям стандартов.

СКС определяются международными, европейскими и национальными стандартами. Стандарты СКС адресованы строителям-профессионалам. В России СКС чаще создают организации, специализирующиеся на компьютерных сетях, системах безопасности.

Россия является членом Международной организации стандартизации (ISO), поэтому руководствуется международными стандартами. Данная информация отражает требования международного стандарта ISO/IEC 11801.

Подсистемы СКС

Стандарт ISO/IEC 11801 подразделяет структурированную кабельную систему на три подсистемы:

магистральную подсистему комплекса зданий;

магистральную подсистему здания;

горизонтальную подсистему.

Магистральная подсистема СКС и телефонная сеть

Магистральная подсистема комплекса зданий соединяет кабельные системы зданий.

Магистральная подсистема здания соединяет распределительные пункты этажей.

Магистральная подсистема включает информационную и речеую подсистемы СКС. Основная среда передачи информационной подсистемы – оптоволокно (одномодовое или многомодовое), дополняемое симметричными четырехпарнымикабелями. Если длина магистральной линии не превышает 90 метров, применяют симметричные кабели категории 5 и выше. При большей длине для информационных приложений, то есть компьютерной сети, требуется прокладывать оптоволоконный кабель.

Речевые приложения магистрали здания работают по многопарным кабелям. Речевые приложения, создающие телефонную сеть, относятся к низшим классам СКС. Это позволяет увеличивать длину линий магистральной подсистемы, создаваемых многопарными кабелями, до двух-трех километров.

Горизонтальная подсистема СКС и компьютерная сеть

Горизонтальная подсистема СКС включает распределительные панели, коммутационные кабели распределительных пунктов этажа, горизонтальные кабели, точки консолидации, телекоммуникационные разъемы. Горизонтальная подсистема обеспечивает локальную сеть для абонентов, предоставляет доступ к магистральным ресурсам. Среда передачи горизонтальной подсистемы – симметричные кабели не ниже категории 5. Стандарты СКС 2007 года предусматривают для центров обработки данных выбор СКС не ниже категории 6. Для информационных технологий (компьютерная плюс телефонная сеть) частных домов новые стандарты рекомендуют использовать категорию 6 / 7. Среда передачи вещательных коммуникационных технологий (телевидение, радио) частных домов / квартир – симметричные защищенные кабели с полосой частот 1 ГГц, плюс коаксиальные кабели до 3 ГГц. Допускается также применение оптоволокна.

В горизонтальной подсистеме СКС преобладает компьютерная сеть. Отсюда вытекает ограничение максимальной длины канала – 100 метров независимо от типа среды. Чтобы продлить срок службы без модификаций, горизонтальная подсистема СКС должна обеспечить избыточность, резерв параметров.

Рабочая область в структуре горизонтальной подсистемы СКС

Рабочая область СКС – помещения (часть помещений), где пользователи работают с терминальным (телекоммуникационным, информационным, речевым) оборудованием.

Рабочая область не относится к горизонтальной подсистеме СКС. Функциональным элементом горизонтальной подсистемы СКС является телекоммуникационный разъем – ТР.

Рабочие места оснащаются розетками, включающими два или более телекоммуникационных разъема. Подключение оборудования рабочей области выполняют абонентскими кабелями. Абонентские / сетевые кабели находятся за рамками СКС, однако они позволяют создавать каналы, параметры которых определяются стандартами СКС. К СКС относят коммутационные кабели / перемычки, используемые для соединений между портами панелей / контактами кроссов.

Более 90% кабелей СКС приходится на горизонтальную подсистему. Кабели горизонтальной подсистемы максимально интегрированы в инфраструктуру здания. Любые изменения в горизонтальной подсистеме влияют на работу организации. Поэтому так важна избыточность горизонтальной подсистемы, обеспечивающая беспроблемную длительную эксплуатацию локальной сети.

Существует два метода прокладки кабелей - скрытый и открытый. Для скрытой прокладки используют конструкцию стен, полов, потолков. Однако, это не всегда возможно. Наиболее распространенный вариант кабель каналов – пластиковые короба.

Варианты открытой прокладки кабельных жгутов включают лотки, короба, миниколонны. Скрытая прокладка кабелей предусматривает установку встроенных розеток, монтаж напольных лючков.

Распределительные пункты СКС – узлы локальной сети

Распределительные пункты СКС представляют собой окончания горизонтальных и магистральных линий, которые для удобства использования фиксируют на панелях или кроссах. Для установки панелей, кроссов, сетевого оборудования служат напольные / настенные шкафы, телекоммуникационные стойки. Распределительный пункт может занимать часть шкафа, несколько шкафов. Помещения распределительных пунктов называют телекоммуникационными помещениями, дословно – телекоммуникационными чуланами (Telecommunication closets). На каждом этаже здания рекомендуется устанавливать один РП этажа. Если офисная площадь этажа превышает 1000 квадратных метров, предусматривают дополнительный РП, соединяемый магистральными каналами.

Распределительные пункты СКС создают узлы локальной сети где компактно размещается сетевое и серверное оборудование.

Напольные шкафы позволяют размещать окончания сотен линий, оборудование, блоки УАТС. Tелекоммуникационные стойки обеспечивают вместимость шкафов, но имеют меньшую стоимость. Их используют когда не требуется дополнительной защиты оборудования локальной сети или особых условий эксплуатации. Настенные шкафы рекомендуется выбирать при небольшом числе линий, отсутствии телекоммуникационного помещения. Оборудование шкафов охлаждают вентиляторами.

Сегодня, как и 10 лет назад, существует два типа сети – одноранговая и сеть на основе сервера. Каждая из них имеет как преимущества, так и недостатки.

Одноранговая сеть, скорее всего, придется по душе пользователям, которые хотят сначала попробовать сеть “в деле” или могут позволить только малые затраты на построение и обслуживание сети. Сеть на основе сервера применяется там, где важен полный контроль над всеми рабочими местами. Это может быть и небольшая домашняя сеть, и объемная корпоративная система сетей, объединенных в одну общую.

Эти два разных типа сетей имеют общие корни и принципы функционирования, что в случае необходимой модернизации позволяет перейти от более простого варианта – одноранговой сети – к более сложному – сети на основе сервера.

Одноранговая сеть

Одноранговую сеть построить очень просто. Самая главная характеристика такой сети – все входящие в ее состав компьютеры работают сами по себе, то есть ими никто не управляет.

Фактически одноранговая сеть выглядит как некоторое количество компьютеров, объединенных с помощью одного из типов связи. Именно отсутствие управляющего компьютера – сервера – делает ее построение дешевым и достаточно эффективным. Однако сами компьютеры, входящие в одноранговую сеть, должны быть достаточно мощными, чтобы справляться со всеми основными и дополнительными задачами (административными, защитой от вирусов и т. д.).

Любой компьютер в такой сети можно назвать как рабочим, так и сервером, поскольку нет какого-либо конкретного выделенного компьютера, который осуществлял бы административный или другой контроль. За компьютером такой сети следит сам пользователь (или пользователи), который работает на нем. В этом кроется главный недостаток одноранговой сети – ее пользователь должен не просто уметь работать на компьютере, но и иметь представление об администрировании. Кроме того, ему приходится самому справляться с внештатными ситуациями, возникающими при работе компьютера, и защищать его от разнообразных неприятностей, начиная с вирусов и заканчивая возможными программными и аппаратными неполадками.

Как и полагается, в одноранговой сети используются общие ресурсы, файлы, принтеры, модемы и т. п. Однако из-за отсутствия управляющего компьютера каждый пользователь разделяемого ресурса должен самостоятельно устанавливать правила и методы его использования.

Для работы с одноранговыми сетями можно использовать любую операционную систему. Поддержка одноранговой сети реализована в Microsoft Windows, начиная с Windows 95, поэтому никакого дополнительного программного обеспечения не требуется.

Одноранговая сеть обычно применяется, когда в сеть нужно объединить несколько (как правило, до 10) компьютеров с помощью самой простой кабельной системы соединения и не нужно использовать строгую защиту данных. Большее количество компьютеров подключать не рекомендуется, так как отсутствие “контролирующих органов” рано или поздно приводит к возникновению различных проблем. Ведь из-за одного необразованного или ленивого пользователя под угрозу ставится защита и работа всей сети!

Если вы заинтересованы в более защищенной и контролируемой сети, то создавайте сеть, построенную на основе сервера.

Сеть на основе сервера

Сеть на основе сервера – наиболее часто встречающийся тип сети, который используется как в полноценных домашних сетях и в офисах, так и на крупных предприятиях.

Как ясно из названия, данная сеть использует один или несколько серверов, осуществляющих контроль за всеми рабочими местами. Как правило, сервер характеризуется большой мощностью и быстродействием, необходимыми для выполнения поставленных задач, будь то работа с базой данных или обслуживание других запросов пользователей. Сервер оптимизирован для быстрой обработки запросов от пользователей, обладает специальными механизмами программной защиты и контроля. Достаточная мощность серверов позволяет снизить требование к мощности клиентской машины. За работой сети на основе сервера обычно следит специальный человек – системный администратор. Он отвечает за регулярное обновление антивирусных баз, устраняет возникшие неполадки, добавляет и контролирует общие ресурсы и т.п.

Количество рабочих мест в такой сети может быть разным – от нескольких до сотен или тысяч компьютеров. С целью поддержки производительности сети на необходимом уровне при возрастании количества подключенных пользователей устанавливаются дополнительные серверы. Это позволяет оптимально распределить вычислительную мощь.

Не все серверы выполняют одинаковую работу. Существуют специализированные серверы, которые позволяют автоматизировать или просто облегчить выполнение тех или иных задач.

Файл-сервер. Предназначен, в основном, для хранения разнообразных данных, начиная с офисных документов и заканчивая музыкой и видео. Обычно на таком сервере создаются личные папки пользователей, доступ к которым имеют только они (или другие пользователи, получившие право на доступ к документам этой папки). Для управления таким сервером используется любая сетевая операционная система, равнозначная Windows NT 4.0.

Принт-сервер. Главная задача данного сервера – обслуживание сетевых принтеров и обеспечение доступа к ним. Очень часто, с целью экономии средств, файл-сервер и принт-сервер совмещают в один сервер.

Сервер базы данных. Основная задача такого сервера – обеспечить максимальную скорость поиска и записи нужных данных в базу данных или получения данных из нее с последующей передачей их пользователю сети. Это самые мощные из всех серверов. Они обладают максимальной производительностью, так как от этого зависит комфортность работы всех пользователей.

Сервер приложений. Это промежуточный сервер между пользователем и сервером базы данных. Как правило, на нем выполняются те из запросов, которые требуют максимальной производительности и должны быть переданы пользователю, не затрагивая ни сервер базы данных, ни пользовательский компьютер. Это могут быть как часто запрашиваемые из базы данные, так и любые программные модули.

Другие серверы. Кроме перечисленных выше, существуют другие серверы, например почтовые, коммуникационные, серверы-шлюзы и т. д.

Сеть на основе сервера предоставляет широкий спектр услуг и возможностей, которых трудно или невозможно добиться от одноранговой сети. Кроме того, одноранговая уступает такой сети в плане защищенности и администрирования. Имея выделенный сервер или серверы, легко обеспечить резервное копирование, что является первоочередной задачей, если в сети присутствует сервер базы данных.

Локальная сеть

Концепция построения сети

Самая простая сеть состоит как минимум из двух компьютеров, соединенных друг с другом кабелем. Это позволяет им использовать данный совместно. Все сети основываются именно на этом простом принципе. Хотя идея соединения компьютеров с помощью кабеля не кажется нам особо выдающейся, в свое время она явилась значительным достижением в области коммуникаций.

Сетью называется группа соединенных компьютеров и других устройств. А концепция соединенных и совместно использующих ресурсы компьютеров носит название сетевого взаимодействия

Компьютеры, входящие в сеть, могут совместно использовать:

данные

принтеры

факсимильные аппараты

модемы

другие устройства

Данный список постоянно пополняется, т.к. возникают новые способы совместного использования ресурсов

Локальные вычислительные сети

Первоначально компьютерные сети были небольшими и объединяли до десяти компьютеров в один принтер. Технология ограничивала размеры сети, в том числе количество компьютеров в сети и ее физическую длину. Например, в начале 1980-х годов наиболее популярный тип сетей состоял не более чем из 30 компьютеров, а длина ее кабеля не превышала 185 м.

Проблемы в сетях

Выбор сети, не отвечающей компании, может повлечь за собой проблемы. Чаще всего встречается ситуация, когда выбрана одноранговая сеть, хотя следовало бы установить сеть на основе сервера. Могут возникнуть и проблемы, связанные с компоновкой сети, если ограничения, накладываемые топологией, не позволяет сети работать в некоторых конфигурациях.

Одноранговые сети

В одноранговых сетях, или рабочих группах, могут возникнуть проблемы, вызванные незапланированным вмешательством в работу сетевой станции. Признаком того, что одноранговая сеть не отвечает требованиям фирмы, являются:

трудности, связанные с отсутствием централизованной защиты данных

постоянно возникающие ситуации когда пользователи выключают свои компьютеры, которые выполняют роль серверов.

Сети с топологией "шина"

В сетях с топологией "шина" возможны ситуации, когда - по разным причинам - шина не подключена к терминатору. А это, как известно останавливает работу всей сети.

Кабель может разорваться

Разрыв кабеля приведет к тому, что два его конца окажутся свободными, т.е. без терминаторов. Электрические сигналы начнут отражаться, и сеть перестанет работать.

Кабель может отсоединиться от Т-коннектора

Компьютер отключается от сети, и у кабеля также появляется свободный конец. Начинается отражение сигналов, следовательно, прекращает функционировать вся сеть

Кабель можеть потерять терминатор

При потере терминатора конец кабеля становится свободным. Начинается отражение сигналов, что приводит к выходу из строя всей сети.

Беспроводные сети

Беспроводная среда

Беспроводная среда постепенно входит в нашу жизнь. Как только технология окончательно сформируется, производители предложат широкий выбор продукции по приемлемым ценам, что приведет и к росту спроса на неё, и к увеличению объема продаж. В свою очередь, это вызовет дальнейшее совершенствование и развитие беспроводной среды. Словосочетание "беспроводная среда" может ввести в заблуждение, поскольку означает полное отсутствие проводов в сети, в действительности это не так. Обычно беспроводные компоненты взаимодействуют с сетью в которой - как среда передачи используется кабель, такая сеть со смешенными компонентами называется гибридной.

Возможности

Идея беспроводной среды весьма привлекательна, так как ее компоненты:

Обеспечивают временное подключение к существующей кабельной сети.

Помогают организовать резервное копиование в существующую кабельную сеть

Гарантирует определенный уровень мобильности

Позволяет снять ограничения на максимальную протяженность сети, накладываемые медными или даже оптоволоконными кабелями.

Передача сигналов

Для передачи по кабелю кодированных сигналов используют две технологии - узкополосную передачу и широкополосную передачу.

Узкополосная передача

Узкополосные системы передают данные в виде цифрового сигнала одной частоты. Сигналы представляют собой дискретные электрические или световые импульсы. При таком способе вся емкость коммуникационного канала используется для передачи одного импульса, или, другими словами, цифровой сигнал использует всю полосу пропускания кабеля. Полоса пропускания - это разница между максимальной и минимальной частотой, которая может быть передана по кабелю.

Широкополосная передача

Широкополосные системы передают данные в виде аналогового сигнала, который использует некоторый интервал частот. Сигналы представляют собой непрерывные электромагнитные или оптические волны. При таком способе сигналы передаются по физической среде в одном направлении.