Автоматизированная система диспетчерского управления. Организация диспетчерской службы и ее функции Диспетчерская информационная система создается

ПО ведения мнемосхемы и электронного журнала энергетического объекта

Диспетчерская информационная система - составная часть программного комплекса Модус.Она основана на приложении ведение мнемосхемы и электронного журнала диспетчера.

ПО ведения мнемосхемы и электронного журнала, вместе с совокупностью расширений, описаннных в разделах Интеграция с базами данных, Работа с данными телемеханики и другими расширениями, составляет Диспетчерскую информациионную систему .

Работа программы основана на ведении оператором оперативной схемы энергообъекта, представленной в графическом виде(мнемосхемы). Оператор вносит в схему изменения в соответствии с изменением состояния энергообъекта. Имеется возможность подключения системы сбора телеметрической информации, а также системы телеуправления, в этом случае программа приобретает возможности, описанные в разделе Работа с данными телемеханики .

Электронный журнал заполняется автоматически в соответствии с изменениями оперативной схемы.
ПО ориентирована на ведение схем любого уровня - ПЭС, РЭС, городских электрических сетей, схем электроснабжения промышленных предприятий, энергосистем, подстанций, электрических схем станций, аппаратуры релейной защиты и автоматики, устройств СДТУ.
Особую пользу ПО приносит на тех предприятиях, где имеются большие схемы электроснабжения при относительно небольшом количестве телемеханики. В первую очередь это городские сети, распредсети, промышленные предприятия.

Раннее это приложение называлось Электронный журнал, а до этого Оперативный журнал. В настоящее время эти названия не используются, так как они не совсем точно передают основное назначение программы.

ПО ведения мнемосхемы

Основные возможности:

  • Позволяет вести учет переключений как на первичной (коммутационные аппараты), так и на вторичной (состояние релейных защит и автоматики) схемах;
  • Обеспечивает проверку допустимости выполнения операций на основе правил переключений в электроустановках;
  • Позволяет вести переключения по бланкам или программам переключений, либо пооперационно;
  • Позволяет вести учет местонахождения ОВБ, ремонтных бригад, участков проведения ремонтных работ, мест аварий, установленных переносных защитных заземлений;
  • Позволяет вести энергообъектов на схемах
  • Имеет развитые средства печати состояний схемы (нормальное, оперативное, на заданный момент времени), обеспечивает поиск и выделение элементов схемы на схеме по ряду критериев;
  • Обеспечивает печать Электронного журнала, формирование отчетов по имеющимся в нем данным.

Сервисные функции журнала

  • Примеры выборок по журналу:
     - с момента регистрации оператора в системе;
     - с предыдущей регистрации оператора в системе;
     - изменения оперативной схемы за указанный период времени;
     - связанных с отличием оперативной схемы от нормальной;
     - аварийные переключения;
     - установленные/снятые переносные заземления, включенные/отключенные ЗН.
  • Отображение обесточенных и заземленных участков
  • Экспорт выборок в виде файлов.
  • Быстрый переход между записями в журнале, элементами схемы и пунктами в бланках переключений.
  • Показ отклонений состояния оперативной схемы от нормальной схемы и от состояния на момент последней сдачи смены.
  • Печать и отображение мнемосхем объекта
  • В состоянии на указанный момент времени
  • В текущем состоянии оперативной схемы
  • В нормальном состоянии схемы
  • Отображение оборудования неисправного, обесточенного, отшинованного, неиспользуемого и т.д.
  • Отображение цепочек кабельных и воздушных линий и ТП, входящих в состав фидера
  • Отображение во всплывающей подсказке ПС, питающего центра и РП от которого питается фидер
  • Диагностика некорректно запитанных фидеров
  • Возможность просмотра текущего состояния схемы и журнала другими пользователями в сети.

Сервисные функции схемы

  • Отображение результата выборки непосредственно на схеме.
  • Просмотр данных связанных с элементами схемы (например, паспортных или расчетных данных) из баз данных имеющихся у заказчика. Стандартный механизм для подключения таких баз встроен в ПО.
  • Настройка отображения схемы «на лету» (без перерисовки) в соответствии с принятым на предприятии стандартами или предпочтениями оператора.
  • Автоматическая расстановка направлений линий от питающего центра к потребителю
  • Автоматическое формирование и подсветка нормального (по нормальным токоразделам) и текущего (на определенный момент времени) фидеров.
  • В комплексе предусмотрена многостраничная система переходов от общей схемы сети до географической карты местности.

Выполняемые организационныые и технологические задачи:

  • Утверждение нормальной схемы и допуск пользователей к работе.
  • Прием (сдача) смены оперативным персоналом объекта, передача информации по смене.
  • Ведение оперативной схемы, ведение электронного журнала.
  • Использование системы подготовки и фиксации исполнения типовых и разовых бланков переключений и программ переключений.
  • Ведение списка текущих задач.

Виды записей в журнале

    Действия с объектами - фиксация переключений, установки снятия оперативного тока/блокировок, установка снятие защит и т.д.

    Квитирование телесигналов и сообщений о превышении значений установок.

    Проверочные действия, результаты обходов и осмотров.

    Переговоры между оперативным персоналом, распоряжения.

    Расстановка и учет выездных и ремонтных бригад по пунктам назначения.

    Установка/снятие мобильных элементов- переносное заземление, плакат, запетление и т.п.

  • Пометка мест аварии.

Редактор оперативных задач

В составе ПО ведения мнемосхемы и электронного журнала реализована программа «Редактор оперативных задач». Она предназначена для контроля за состоянием оперативных задач на рабочем месте диспетчера.

ПО позволяет:

    Cоставление оперативных задач посредством выполнения операций на электронном макете энергообъекта.

    Проверка оперативной задачи по мнемосхеме (макету) с контролем правильности выполнения операций:

      включение заземляющих ножей под напряжением;

      отключение разъединителей под нагрузкой;

      контроль оперативной блокировки;

      показ на схеме пунктиром отключенных электрических участков схемы и т.д..

    Отметки выполнения операций в оперативных задачах, чем обеспечивается контроль за реальным состоянием активных оперативных задач.

    Быстрый доступ и переключение между активными задачами.

    Сохранение активной задачи в файл и загрузка из файла в актуальном состоянии.

    Возможность просмотра мнемосхем энергообъектов.

    Возможность печати оперативной задачи в виде бланка переключений стандартной формы.

    Составление обычных бланков переключений и работа с ними.

    Подготовка и хранение базы данных типовых бланков переключений.

    Проверка возможности выполнения типового бланка переключений в текущем состоянии схемы энергообъекта.

    Создание обычных бланков переключений на основе типовых бланков в электронном виде и работа по ним.

В программе предусмотрен контроль за состоянием нескольких одновременно исполняемых оперативных задач. Диспетчер может переключаться между ними в окне списка оперативных задач. Редактор оперативных задач интегрирован с приложением ПО Ведения мнемосхемы и Электронного журнала.

Дополнительные журналы в составе ДИС

Начиная с версии 5.20 в состав ДИС входят ряд дополнительных журналов:

  • Изменения источника питания потребителей,
  • Технологических нарушений,
  • Заявок потребителей,
  • Дефектов оборудования..

Данные дополнительных журналов хранятся в БД ЭЖ и содержат информацию параметрах и времени события, энергообъекте, пояснительную часть, данные о лице, внесшего запись:
Разработанные журналы полностью интегрированы с электрической схемой. Обеспечен автоматический переход от записи журнала к элементу схемы и обратно. Также возможна работа журналов без схемы.
Все журналы позволяют формировать отчеты в формате Word

Журнал изменений источников питания
Журнал изменений источников питания позволяет вести учет изменения энергоснабжения потребителей.

Форма журнала изменения источников питания

Журнал регистрации технологических нарушений
В журнале технологических нарушений (ТН) регистрируются:

  • Время возникновение ТН
  • Объект возникновения ТН
  • Количество обесточенных ТП, ПС, объектов здравоохранения, теплоснабжения
  • Отключенная мощность
  • Время устранения ТН ввода в работу объект

Данные отчета об обесточенных абонентах формируются автоматически на основе заранее подготовленных справочников абонентов и анализа текущей конфигурации сети.

Форма журнала технологических нарушений

Форма записи журнала технологических нарушений

Журнал заявок потребителей о нарушении электроснабжения.
Для организации процесса регистрации заявок потребителей в ДИС разработан соответствующий модуль, позволяющий фиксировать информацию о полной или частичной потере электроснабжения, используя сформированные на предприятиях корпоративные информационные системы.

Форма журнала заявок потребителей

Форма записи журнала заявок потребителей

Журнал дефектов и неполадок с оборудованием и ход их устранения
Разработан модуль регистрации дефектов и неполадок с оборудованием, полностью интегрированный с электрической схемой. При этом обеспечен автоматический переход от записи к элементу схемы и обратно.
Модуль обеспечивает возможность выборки записей по:

  • планируемой дате устранения дефекта (с указанием конкретной даты либо с указанием периода),
  • подразделению, ответственному за устранение дефекта,
  • всем не устранённым дефектам, дефектам, срок устранения которых истек;

Модуль позволяет переносить сроки устранения дефекта.

Форма журнала дефектов

Форма записи журнала дефектов

Безопасность и юридические аспекты

Все изменения в журнал заносятся от имени диспетчера, заступившего на смену. Подделка и изменение задним числом записей в электронном журнале исключены. Для страховки от сбоев ПО возможно ведение твердой копии (печать) одновременно с занесением записей в журнал.

Подключение телесигнализации / телеуправления

Диспетчерскую информационную систему можно рассматривать как составную часть ОИК (верхний уровень), в котором реализована поддержка оперативных переключений и имеются широкие возможности интеграции.

В программное обеспечение встроена возможность приема телеинформации и телеизмерений, а также телеуправления энергетическими объектами через индустриальный программный интерфейс OPC. Этот программный интерфейс поддерживается многими современными комплексами телемеханики, а также системами ОИК/SCADA.

Обмен такими комплексами осуществляется без дополнительного программирования. В случае использования информации с систем, не поддерживающих OPC, стыковка может быть осуществлена на договорной основе силами разработчиков Модус либо другой подрядной организации (оптимильным обычно является разработка соответствующего ОРС-сервера).

Таким образом, программный комплекс можно рассматривать как составную часть ОИК(верхний уровень), в котором реализована поддержка оперативных переключений.

Основные положения

Основной целью строительства ЕАСДКиУ является сокращение бюджетных дотаций на оплату населением и предприятиями бюджетной сферы потребляемых энергоресурсов (тепла, воды и электроэнергии) за счет введения объективного учета потребления энергоресурсов.

Кроме того, Единая автоматизированная система диспетчерского контроля и управления городским хозяйством создается как инструмент для решения следующих задач:

Повышение качества оперативогного учета, планирования и распределения энергоресурсов в городе;

Улучшение системы контроля за использованием энергоресурсов города;

Построение единого информационно-телекоммуникационного пространства в интересах Комплекса городского хозяйства как составной части Общегородской информационной системы и объединения на его базе имеющихся информационных ресурсов;

Создание автоматизированной системы комплексной диспетчеризации инженерного оборудования зданий и сооружений;

Создание объективной системы расчетов между потребителями и поставщиками энергоресурсов.

Анализ состояния существующих автоматизированных систем диспетчерского управления инженерным оборудованием зданий и сооружений

Автоматизированная система диспетчерского управления (АСДУ) инженерным оборудованием зданий и сооружений является основным элементом нижнего уровня городской системы управления потреблением энергоресурсов (ГСУПЭ) и обеспечивает выполнение функций мониторинга инженерного оборудования зданий и сооружений.

В настоящий момент системы управления городского уровня отсутствуют.

Компания «Инфорт» предлагает рассмотреть возможность сотрудничества по вопросам создания автоматизированной системы управления. Произвести работы по замене существующего морально устаревшего оборудования ОДС, эксплуатируемого в диспетчерских жилищно-коммунальных управлений. Спроектировать и построить систему, при которой будет реализован сбор и обработку информации о расходе энергоносителей; сигнализация об аварийных состояниях инженерных систем, обеспечить создание диспетчерского CALL-центра с объектами управления, что, таким образом, позволит собирать низовую информацию, принимать оперативные и адекватные решения на местах и передавать соответствующую информацию по принадлежности.

Компания «Инфорт» обладает высокими компетенциями по созданию и защите территориально-распределенных систем и с радостью применит свои знания для повышения эффективности и безопасности систем управления городским хозяйством.

Первым шагом в вопросе возможного сотрудничества, предлагаем провести аудит всех инженерных систем с целью выявления потенциальных внешних и внутренних угроз и планирования работ для создания Единая автоматизированная система диспетчерского контроля и управления городским хозяйством.

Описание ЕАСДКиУ

Структура ЕАСДКиУ

Основными элементами ЕАСДКиУ являются:

  • распределенная информационная система диспетчерского контроля и управления жилищно-коммунальным хозяйством (РИС);
  • телекоммуникационная подсистема на базе, объединяющей элементы АСДУ;
  • информационно-расчетной подсистемы, обеспечивающей осуществление расчетов между субъектами жилищно-коммунального хозяйства.

ЕАСДКиУ строится в соответствии с требованиями семиуровневой эталонной модели взаимодействия открытых систем (ISO/OSI), обеспечивающей взаимодействие разнородных информационно-телекоммуникационных систем на базе стандартных интерфейсов и протоколов, удовлетворяющих международным рекомендациям.

Телекоммуникационная система ЕАСДКиУ должна обеспечивать выполнение следующих основных требований:

  • соответствовать иерархическому принципу построения информационной системы ЕАСДКиУ и обеспечивать необходимые интерфейсы и шлюзы к сетям другого функционального предназначения согласно проекту развития Общегородской информационной системы;
  • обеспечивать:

Оптимальную пропускную способность с возможностью ее расширения для каналов, соединяющих различные элементы ЕАСДКиУ в зависимости от решаемых задач и объема информационных потоков;

Синхронизацию распределенных баз данных ЕАСДКиУ;

Высокую степень живучести, защищенности, помехоустойчивости и надежности каналов связи с достаточной степенью резервирования;

Оптимальное сочетание различных протоколов передачи данных с гарантированной доставкой на каждом из иерархических уровней системы ЕАСДКиУ;

  • иметь развитые средства мониторинга и управления сетями;
  • предусматривать возможность круглосуточной непрерывной работы всех элементов системы ЕАСДКиУ.

Распределенная информационная система

Функции и состав РИС

РИС предназначена для выполнения следующих функций :

  • сбор информации о текущих значениях показателей измерительных устройств, входящих в состав домовой сети автоматизированной системы диспетчерского управления (АСДУ);
  • передачу значений технических характеристик, технологических параметров и состояния инженерных систем от домовых регистраторов к периферийным серверам базы данных;
  • дистанционное управление оборудованием;
  • автоматизированное управление параметрами инженерных систем;
  • накопление и хранение показаний приборов коммерческого учета расхода энергоресурсов;
  • обеспечение защиты передаваемой информации от возможности перехвата или искажения ее третьими лицами;
  • обслуживание запросов клиентов РИС, обращенных к базе данных;
  • обеспечение защиты информационных ресурсов РИС от возможности несанкционированного доступа.

Система представляет собой программно-аппаратный комплекс и состоит из следующих составляющих:

  • комплекса сбора первичной информации, состоящей из АСДУ инженерным оборудованием зданий и сооружений, которые представляют собой совокупность домовых сетей и должны взаимодействовать с остальными элементами РИС с помощью домовых регистраторов;
  • комплекса базы данных диспетчерского контроля и управления, который должен состоять из центрального сервера базы данных и периферийных серверов баз данных;
  • комплекса клиентов РИС - совокупность систем, авторизованных серверами базы данных РИС, которые должны выполнять приложения, которые обращаются с запросами к этой базе;
  • телекоммуникационной системы, объединяющей элементы РИС.

Топология и архитектура РИС

Топология РИС соответствует принципам построения централизованной системы, и ее архитектура удовлетворяет следующим требованиям.

РИС представляет собой 3-ступенчатую иерархическую структуру, у которой на верхнем уровне находится центральный сервер базы данных РИС, ниже находятся периферийные серверы базы данных, а на нижнем уровне - домовые регистраторы. Все остальные клиенты РИС взаимодействуют исключительно с ЦСБД. При этом клиенты РИС не имеют возможности изменять информацию, содержащуюся в базе данных ни на ЦСБД, ни на ПСБД.

РИС проектируется таким образом, что возникновение нескольких аварийных ситуаций не приводит к перегрузке системы. В случае выхода из строя линий связи и электропередачи, отдельные компоненты системы способны работать в автономном режиме независимо от остального оборудования системы.

РИС способна автоматически переконфигурировать свои структуры в случае выхода из строя отдельных компонентов ЕАСДКиУ.

Одновременно с этим, структура и топология РИС на телекоммуникационном уровне привязаны к архитектуре и отвечают определенным требованиям топологии. В частности, сеть доступа содержит узлы двух уровней: первичные и вторичные, на которых размещается оборудование, обслуживающее соответствующие уровни сети. При этом ни места размещения оборудования РИС, ни места размещения АРМ пользователей не привязаны к архитектуре.

На первичных узлах размещаются серверы базы данных и телекоммуникационное оборудование, обеспечивающее взаимодействие баз данных между собой по транспортной сети.

На вторичных узлах размещаются пункты сбора данных от "куста" домов и телекоммуникационное оборудование, обеспечивающее связь с сервером базы данных.

В домах размещаются домовые телекоммуникационные узлы, которые связывают оборудование домовой сети АСДУ с вторичными узлами.

Благодаря связи между серверами баз данных и клиентами РИС по транспортной сети образуется распределенная городская база данных, которая достаточно легко должна решить вопросы защиты баз данных от катастрофических воздействий как природного, так и антропогенного происхождения.

Обмен данными на всех уровнях взаимодействия с каналообразующим оборудованием сети осуществляется с помощью открытых протоколов, снабженных элементами криптозащиты от несанкционированного доступа к информации.

Телекоммуникационная система

Телекоммуникационная система ЕАСДКиУ служит для объединения всех ее элементов и содержит два уровня: транспортная сеть и сеть доступа.

Транспортная сеть строится на основе единой волоконно-оптической кабельной магистральной сети с использованием цифрового волоконно-оптического оборудования, соответствующего последним европейским стандартам и предназначена для высококачественной передачи цифровых потоков к узлам транспортной сети.

Сеть доступа осуществляет доведение цифровых потоков до абонентов. Особенностью этой сети является то, что она строится как многофункциональная широкополосная сеть, потенциально способная обеспечить предоставление пользователю широкого спектра телекоммуникационных услуг.

Автоматизированная система диспетчерского управления

Предпосылки создания концепции

В комплекс систем инженерного обеспечения объектов входят системы энергоснабжения, системы вентиляции, кондиционирования (в том числе технологического), системы противопожарной защиты. Инженерные системы в принципе требуют высококвалифицированного сервиса.

При автоматизации инженерных систем, очевидно, что необходима единая система мониторинга и управления всем инженерным комплексом. Во-первых, любое оборудование может выйти из строя, и, следовательно, потребуется время на его восстановление. Кроме того, необходимо не только сократить время реакции на возникающие инциденты, но и иметь возможность предупреждать сбои и отказы в работе систем, всегда знать, что происходит с оборудованием на объекте и получать упреждающие сообщения.

Ранее ситуация обстояла так: реакция происходила только после серии звонков с объекта или, что еще хуже, звонки поступали уже после ряда некомпетентных действий обслуживающего персонала, которые впоследствии приводили к серьезным проблемам с оборудованием. Вторая важная предпосылка внедрения системы контроля - невозможность приставить к каждому виду оборудования соответствующего специалиста: обеспечить присутствие высококвалифицированного электрика, кондиционерщика или иного сервисного служащего, особенно, если эти объекты находятся в удаленных точках страны.

Система мониторинга - второй компонент, осуществляет регистрацию информации о состоянии объекта и оборудования и представляет ее в удобном для оператора виде. Основной функционал системы - контроль и мониторинг работы всех инженерных систем, расположенных на объектах.

В качестве системы мониторинга может выступать любая SCADA-система, объединенная с системой технического обслуживания и ремонта.

Состав АСДУ

Автоматизированная система диспетчерского управления (АСДУ) инженерным оборудованием зданий и сооружений объединяет здания в пределах одного ГРЭП и обеспечивает выполнение следующих функций:

Накопление, хранение и передача на вышестоящий уровень (на сервер доступа) показаний приборов коммерческого учета расхода энергоресурсов;

Контроль инженерного оборудования зданий и сооружений;

Дистанционное управление оборудованием инженерных систем;

Автоматизированное управление параметрами инженерных систем.

АСДУ состоит из автоматизированного рабочего места (АРМ) пункта управления диспетчерской и оборудования домовой сети.

Оборудование домовой сети АСДУ предназначено для сбора, обработки и передачи по сети информации о состоянии инженерного оборудования здания и содержит концентраторы и домовой регистратор, объединенные домовой сетью.

Концентраторы служат для сбора информации с первичных измерительных преобразователей (датчиков) и управления исполнительными устройствами и размещаются в местах компактного расположения датчиков (домовой тепловой пункт, электрощитовая, машинное помещение лифта, чердак, подвал, подъезд жилого дома без лифта). Существует соответственно четыре типа концентраторов.

Концентратор для электрощитовой обеспечивает возможность подключения автоматизированной системы коммерческого учета квартирного потребления электроэнергии (АСКУЭ БП) по силовой сети.

Дуплексную громкоговорящую связь диспетчера с помещениями осуществляют с помощью переговорных устройств, которые подключаются к концентраторам. Вызов диспетчера из помещений осуществляется нажатием соответствующей кнопки на переговорном устройстве. Кроме того, через переговорное устройство по команде диспетчера может быть открыт электромеханический замок.

Домовой регистратор предназначен для управления оборудованием домовой сети и его связи с сервером доступа ЕАСДКиУ и обеспечивает функционирование домового уровня ЕАСДКиУ.

Домовые регистраторы, модемы и концентраторы монтируются в запираемых металлических шкафах в помещениях, обеспечивающих их сохранность. Помещение, где монтируется оборудование АСДУ, снабжается средствами, исключающими несанкционированный доступ (замок и датчики контроля несанкционированного доступа).

Оборудование домовой сети АСДУ выполнено в антивандальном исполнении, максимально затрудняющем его несанкционированное вскрытие.

В оборудовании домовой сети АСДУ предусмотрены меры защиты от актов саботажа в виде попыток вскрытия системы кодирования информации, фальсификации информации об оплате и о пользовании услугами.

В информационном плане АСДУ состоит из следующих подсистем.

1. Подсистема контроля инженерного оборудования , которая индицирует текущее состояние инженерного оборудования, сигнализирует о его внештатном состоянии и характеризует качество предоставляемых услуг (энергоресурсов).

Контроль наличия фаз во ВРУ электрощитовой.

Центральное отопление и горячее водоснабжение:

Расход воды в прямом и обратном трубопроводах;

Температура в прямом и обратном трубопроводах;

Температура наружного воздуха;

Давление в прямом и обратном трубопроводах;

Автоматизированное телеуправление расходом тепла и горячей воды.

Холодное водоснабжение:

Давление;

Расход холодной воды;

Состояние циркуляционных насосов;

Автоматизированное телеуправление расходом холодной воды (подкачивающий насос холодной воды).

Контроль состояния лифтов:

Параметры согласно перечню сигналов, контролируемых оборудованием АОЗТ "МОСОТИС";

Авария лифта (обобщенный параметр по результатам самоконтроля станции управления).

Дуплексная громкоговорящая связь диспетчера (одновременно способна решать задачи подъездного домофона) с:

Электрощитовыми;

Тепловыми узлами;

Кабинами и машинными помещениями лифтов;

Помещениями для дежурной смены ГРЭП;

Входной дверью в диспетчерский пункт;

Помещениями консьержек или входом в подъезд;

Дистанционное управление входной дверью в диспетчерскую.

Дистанционное включение освещения в подъездах домов, перед дверями подъездов и дворового освещения.

Контроль и дистанционное управление пуском дренажных насосов канализации.

2. Подсистема коммерческого учета энергоресурсов , которая обеспечивает сбор информации о домовом потреблении. (Оборудование АСДУ позволяет с помощью простейших счетчиков вести учет потребления энергоресурсов по любому количеству тарифов.)

Электроэнергии:

На нужды дома;

Лифтовым хозяйством дома;

Суммарное потребление жилого сектора.

На центральное отопление;

На горячее водоснабжение.

Горячей воды.

Холодной воды.

3. Подсистема контроля доступа в технические помещения , которая обеспечивает физическую сохранность оборудования АСДУ, сигнализируя о проникновении во все технические помещения (чердаки, на крыши, подвалы, машинные помещения лифта, вентиляционные помещения, электрощитовые, помещения ГРЭП и т.д.).

Кроме того, эта подсистема обеспечивает дополнительную сохранность оборудования АСДУ путем сигнализации о вскрытии запираемых металлических шкафов, в которых монтируется оборудование.

4. Подсистема пожарной, газовой и аварийной безопасности , которая сигнализирует о состоянии датчиков соответствующих подсистем во всех технических помещениях и узлах, в том числе:

Пожарная сигнализация;

Контроль состояния домовой системы пожарной сигнализации и дымоудаления;

Контроль температуры окружающего воздуха;

Контроль состояния вентиляции (приточная или вытяжная);

Сигнализация о загазованности подвальных помещений;

Сигнализация о затоплении подвальных помещений

Комплекс диспетчеризации лифтов

Существует комплекс для диспетчеризации лифтового и коммунального хозяйства города . В соответствии с мировыми тенденциями для связи с ЕАСДКиУ используются беспроводные каноны GSM телефонии , что позволило решить основные задачи:

  • свести количество диспетчерских пультов к одному на весь город , закрепив за каждым диспетчером до 400 лифтов;
  • избавиться от большого количества дорогих и ненадежных кабельных соединений ;
  • наравне с подключением к ЕАСДКиУ недиспетчеризированных лифтов, аппаратура может применяться для замены устаревших систем диспетчеризации ;
  • за счет простоты освоения основных принципов работы с оборудованием уменьшить влияние того факта, что на начальном этапе внедрения аппаратуры отсутствует требуемая квалификация персонала

Кроме всего перечисленного, система идеально подходит для быстрой диспетчеризации лифтов по отдельным хозяйственным договорам, по 2-3 подъезда, а также для подключения к ЕАСДКиУ отдельно стоящих домов, подведение проводных коммуникаций к которым затруднено по объективным причинам.

Комплекс диспетчеризации лифтов может состоять из двух основных неотделимых модулей:

  • станций диспетчеризации, которые устанавливаются на каждом контролируемом лифте и
  • комплекса программного обеспечения диспетчера, с помощью которого производится диагностика и управление состоянием лифта.

К станции управления лифтом подключается одна станция диспетчеризации с использованием всего 12-15 проводников длиной 2-3 м. В помещении ЕДЦ каждый диспетчер работает на своем компьютере, к которому подключен GSM модем.

Основные возможности:

  • Авторизация пользователей.
  • Отображение объектов.
  • Отображение списка каналов, принадлежащие выбранному объекту.
  • Отображение местоположения объектов на карте.
  • Отображение графиков изменения значений аналоговых каналов.
  • Отображение графиков объекта, отображение графиков аналоговых каналов, выбранных для показа.
  • Управление пользователями.
  • Управление подразделениями.
  • Управление параметрами настройки.
  • Конфигурация отчётов.
  • Добавление объектов.
  • Изменение объектов.
  • Удаление объектов.
  • Поиск объектов.
  • Просмотр журнала пользовательских событий.
  • Просмотр журнала обновления объектов.
  • Просмотр журнала сервисных событий, добавление, изменение, сохранение, сервисных событий.
  • Просмотр, добавление, изменение, удаление паспорта объекта.
  • Сдача смены.
  • Добавление объектов в расписание опроса станций, в выбранный день недели и заранее определённое время.
  • Управление расписанием опроса станций.
  • Отправка SMS на объект.
  • Отправка команды на станцию.
  • Управление станциями(объектами).
  • Справка о программе с возможностью сохранения в виде файла, а так же общая информация о компании и продукте.

Работа ЕАСДКиУ

Например, в РУВД поступит информация о попытках проникновения в технические помещения зданий и сооружений и одновременно диспетчер АСДУ по наложенному каналу связи устанавливает голосовую связь с дежурным районного отдела милиции

Аналогично построена система противопожарной безопасности технических помещений. Информация о возгораниях в любых местах, снабженных пожарными датчиками, поступит на монитор АРМ ГРЭП и одновременно в районную пожарную часть.

Информация о затоплении остается на уровне ГРЭП, так как подобные неисправности устраняются силами ГРЭП. Но при необходимости, эта информация может быть передана на верхние уровни для сбора статистики происшествий в структурах района, округа или города. Например, в Водоканал поступит информация о расходе холодной воды и давлении на вводе дома, а в аварийную службу Водоканала - информация о падении давления на вводе дома и о затоплении подвальных помещений.

В "Ленэнерго" поступит информация о показаниях домовых счетчиков, показаниях напряжения по фазам, а в аварийную службу "Ленэнерго" - информация о пропадании фаз.

Таким образом, мы видим, что ЕАСДКиУ является не только диспетчером сети уровня АРМ ГРЭП, но и одновременно является администратором всей транспортной сети - распределяет информацию в обобщенном (требуемом) виде всем вышестоящим организациям. Однако в случае необходимости, оператор вышестоящей организации может затребовать любую информацию нижнего уровня.

ЕАСДКиУ позволит Комплексу городского хозяйства контролировать деятельность коммунальных служб, начиная от ГРЭП и ДЕЗ, и поставщиков коммунальных услуг.

Для этого во все управления Комплекса городского хозяйства, в префектуры города должен поступать объем информации, необходимый и достаточный для контроля на соответствующих уровнях. Эта информация может поступать в обобщенном виде или в реальном масштабе времени. Вообще, вопрос о том, какими функциями наделять ЕАСДКиУ, следует решать совместно со службами, которые будут контролировать работу Комплекса городского хозяйства..

Пути развития системы

ЕАСДКиУ содержит большие возможности для дальнейшего развития.

1. Может быть развернута новая общегородская служба связи - видеоконференцсвязь между структурами города на любом уровне: Управления КГХ, Мэрия - префектуры, префектуры - префектуры, префектуры - территориальные управления и т.д.

2. ЕАСДКиУ может быть использована для создания автоматизированных систем управления жизнеобеспечением города, например, городскими потоками энергоресурсов (электроэнергии, воды, тепла, газа), мониторинга окружающей среды и т.д.

3. Следующим шагом в использовании уникальных свойств ЕАСДКиУ для управления системами городского хозяйства явится переход от сбора и учета информации о домовом потреблении энергоресурсов к созданию автоматизированной системы сбора и учета коммунальных услуг, потребляемых каждым квартиросъемщиком, и диспетчеризации квартирного инженерного оборудования. Эта подсистема будет базироваться на инфраструктуре АСДУ, реализовывать алгоритмы диагностирования состояния и управления квартирным инженерным оборудованием и позволит снабдить индивидуального абонента компьютеризированными системами охранной и пожарной сигнализации и контроля доступа, начиная с простейшего подъездного домофона и заканчивая системами телевизионного наблюдения. Отображение информации о состоянии инженерного оборудования квартир будет осуществляться в диспетчерских нижнего уровня. Внедрение системы квартирного учета и контроля энергоресурсов позволит потребителю платить только за то, что он употребил и не оплачивать непроизводительные потери при транспортировке энергоресурсов от производителя до потребителя.

Наши клиенты

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

[Введите текст]

Введение

Разработка ИС диспетчерской службы такси производится на примере составленного каталога диспетчерская служба такси. Каталог покажет автомобили, их водителей, клиентов, даты заказов, выполнение заказа, стоимость заказа, адреса заказов.

1. Предметная область

Областью рассмотрения является деятельность диспетчеров службы такси, которые должны:

Вести список клиентов, в котором вводится номер карточки, фамилия и имя, домашний адрес и мобильный телефон.

Список автомобилей, в котором вводится номер автомобиля, марка автомобиля, государственный номер автомобиля, водитель автомобиля.

Список заказов, в который вводится код заказа, дата заказа, номер автомобиля, номер карточки, сумма заказа, состояние заказа.

Список водителей, в котором вводится фамилия водителя, имя, стаж работы.

2. Постановка задачи

Разработка моделей процесса приведена на примере создания базы данных «Диспетчерская служба такси».

Моделирование элементов системы.

Диаграммы IDEF0

Диаграммы DFD

3. Концептуальные требования

Для проектирования базы данных выбран универсальный методы проектирования ER-метод (метод “сущность-связь”). При использовании этого метода необходимо, прежде всего, создать ER- модель, отражающую связи сущностей заданной предметной области. Далее, на основании ER-диаграммы, строится базы данных.

Сущности - концептуальные требования, которые необходимо учесть при разработке БД: каталоги клиентов, заказов, автомобилей, водителей.

Нормализация

Для создания базы данных необходимо раскрыть сущности концептуальных требование и нормализовать их. Нормализация таблицы представляет собой последовательное изменение структуры таблицы до тех пор, пока она не будет удовлетворять требованиям последней формы нормализации.

I нормальная форма

Таблица находится в первой нормальной форме тогда и только когда, когда ни одно из полей не содержит более одного значения и любое ключ.поле не пусто.

Раскрываем сущности концептуальных требований:

Автомобили (НомерАвто, МаркаАвто, ГосНомерАвто, Водитель).

Клиент (Номеркарточки, ФамилияИмя, ДомашнийАдрес, НомерТелефона).

Заказ (КодЗаказа, ДатаЗаказа, ВремяЗаказа, НомерАвто, НомерКарточки, СуммаЗаказа, СостояниеЗаказа).

Водитель (Фамилия, Имя, СтажРаботы).

II нормальная форма

Таблица находится во второй нормальной форме, если она удовлетворяет требованиям первой нормальной формы и все её поля, не входящие в первичный ключ, связаны полной функциональной зависимостью с первичным ключом:

Таблица 1 - Автомобиль

Таблица 2 - Заказы

Таблица 3 - Клиенты

III нормальная форма

Таблица находится в третьей нормальной форме, если она удовлетворяет требованиям второй нормальной формы и ни одно из ее не ключевых полей не зависит функционально от любого другого не ключевого поля:

Рисунок 3 - Таблица Автомобиль

Рисунок 4 - Таблица Заказы

Рисунок 5 - Таблица Клиенты

Рисунок 6 - Таблица Водитель

4. Структурная схема

На основании третьей нормальной формы создаем структурную схему базы данных «Диспетчерская служба такси».

Создание структурной схемы базы данных.

Войти в схему данных: вкладка Работа с базами данных.

На панели инструментов нажать «Схема данных».

Рисунок 7

Окно с перечнем таблиц

Двойным щелчком по имени таблицы добавить таблицы на поле

Рисунок 8

Установить связь между таблицами

Рисунок 9

5. Порядок выполнения работы

Для начала создадим базу данных, нажав «Файл - Создать - Новая база данных». Задаем имя базы, место сохранения, щелкаем Создать.

Рисунок 10

Теперь задаем структуру таблиц.

На закладке главная выбираем режим «Конструктор».

Рисунок 11

Сохраняем таблицу под выбранным именем.

Рисунок 12

Создаем таблицу в окне конструктора.

Рисунок 13

6. Создание таблиц в режиме конструктора

Нажать «Создать таблицу в режиме конструктора».

Ввести имя поля.

Выбрать тип данных.

Поставить первичный ключ, щелкнув по кнопке «Ключ» на панели инструментов, предварительно установив курсор на поле слева от нужного имени (ключевое поле должно находиться на первом месте списка полей).

Задать имя таблицы призакрытие после ввода всех требуемых полей и их типов.

Аналогичным способом построены таблицы:

Автомобиль.

Водитель.

Создание связи между таблицами.

Щелкнуть по значку «Схема данных» на панели инструментов, открыть схему данных.

Из появившегося дополнительного окна «Добавить таблицы» выделить щелчком необходимые имена таблиц и щелкнуть по кнопке «Добавить».

Объединить ключевые поля таблиц: щелчком мыши выделить в одной из таблиц поле, которое будет соединяться в одноименном поле другой таблицы, и, зажав мышь, перетащить это поле на соединяемое поле. Отпустить мышь, при этом откроется окно «Изменение связей» с указанием соединяемых полей соответствующих таблиц и тип связи этих полей: «один-к-одному», «один-ко-многим»:

При типе связи «один-к-одному» ставим флажок в поле обеспечения целостности данных и щелкаем кнопку ОК.

При типе связи «один-ко-многим».

Обеспечение целостности данных.

Каскадное обновление связанных полей.

Каскадное удаление связанных полей.

Нажимаем кнопку ОК.

В результате имеем схему связей между таблицами БД «Диспетчерская служба такси».

7. Создание форм

Переходим на вкладку Создание. Жмем на кнопку «Форма» на панели сверху. Создается форма на заполнение. Сохраняем форма под название «Форма ввода». Сохраняем. Жмем правой кнопкой мыши по названию формы и выбираем «Режим формы». Либо во вкладке «Создание» выбираем «Мастер форм»:

8. Создание запросов

база данная такси конструктор

Типы запросов:

Простой запрос - создание запроса из определенных полей.

Перекрестный запрос - создание запроса, выводящего данные в компактном формате, подобному формату электронной таблицы.

Повторяющиеся записи - создание запроса на поиск повторяющихся записей в простой таблице или запросе.

Записи безподчиненных - создание запроса на поиск записей, которым не соответствует ни одна запись в подчиненной таблице.

Простой запрос

На вкладке Создание в группе Запросы щелкните Мастер запросов.

Рисунок 14

В диалоговом окне Новый запрос выберите вариант Простой запрос и нажмите кнопку ОК.

Рисунок 15

Рисунок 16

В группе Таблицы и запросы выберите таблицу, содержащую нужные данные. Обратите внимание на то, что в качестве источника данных можно использовать другой запрос. После выбора таблицы ее поля отображаются в области Доступные поля.

9. Перекрестный запрос

На вкладке Создание в группе Другие щелкните Конструктор запросов.

Рисунок 17

В диалоговом окне Добавление таблицы дважды щелкните каждую таблицу или запрос, которые следует использовать в качестве источников записей.

Включите поля, которые хотите использовать, в список "Выбранные поля" и затем щелкните мышью кнопку "Далее". Теперь следует задать критерий группировки, применяемый для разделения ваших строк на столбцы

Включите поля, которые хотите использовать, в список "Выбранные поля" и затем щелкните мышью кнопку "Далее". Теперь следует задать критерий группировки, применяемый для разделения ваших строк на столбцы. В этот момент можно выбрать одно поле.

Выберите поле для группировки столбцов и щелкните мышью кнопку "Далее". На последнем шаге вы должны подобрать вычисление, которое хотите выполнять для получения итогов. Выберите поле для вычисления и затем функцию для подсчета сводных данных.

10. Создание отчетов

Для того чтобы создать отчет нужно перейти на вкладку «Создание» и выбрать «Отчет»

Отчеты можно создать при помощи:

Конструктор отчетов.

Мастера отчетов.

И вручную.

В нашей базе данных отчет создается при помощи мастера отчетов. Нужно нажать на «мастер отчетов». Откроется окно.

Рисунок 18

Переносим доступные поля по одному нужно нажать кнопку «>».

Чтобы перенести все поля сразу нужно нажать кнопку «>>»

Рисунок 19

В следующем окне можно распределить уровни группировки.

В следующем шаге можно выбрать вид макета отчета, а так же выбрать ориентацию книжную или альбомную.

К отчету можно прикрепить наклейки. Так же можно создать пустой отчет.

В конце создания базы данных должен быть создан общий отчет, включающий в себя все поля.

Заключение

Разработка модели процесса диспетчерская служба такси произведена на примере составление каталога диспетчерская служба такси

Каталог диспетчерская служба такси показывает автомобили их водителей, клиентов, даты заказов, выполнение заказа, стоимость заказа, адреса заказов.

Литература

1. Гвоздева В.А., Лаврентьева И.Ю., основы построения автоматизированных информационных систем - Москва, ИД Форум - ИНФРА - М, 2007. - 320с.

2. Фуфаев Д.Э., Фуфаев Д.Э. Разработка и эксплуатация автоматизированных информационных систем - Москва, издательский центр Академия, 2010. - 304с.

3. Гагарина Л.Г., Киселев Д.В., Е.Л. Федотова. Разработка и эксплуатация автоматизированных информационных систем - Москва, ИД Форум - ИНФРА - М, 2009. -384с.

4. Димов Ю.В. Метрология, Стандартизация и Сертификация - Питер, 2005

5. Пирогов В.Ю. Информационные системы и базы данных: организация и проектирования: учеб. Пособие - СПБ.БВХ- Петербург, 2009. -528с.

6. Харитонова И.А., Михеева В.Д. MicrosoftAccess 2000 - СПБ. : БВХ- Петербург, 1999. - 1088с.

7. Максимов Н.В. и др. Современные информационные технологии. Учебник- М: “ФОРУМ”: ИНФРА-М, 2011.

Размещено на Allbest.ru

Подобные документы

    Создание таблиц базы данных в режиме конструктора. Схема связей между таблицами и содержание таблиц. Установление связи с поддержанием целостности. Структуры двух запросов (в режиме конструктора) и описание процесса их создания. Результаты вывода отчетов.

    курсовая работа , добавлен 28.06.2015

    Понятия основных компонентов базы данных Access. Таблицы, отчеты, макросы и модули, форма, запросы к базе и их виды. Типы данных. Создание базы данных "Кадры". Создание таблицы в режиме конструктора. Использование мастера подстановок для создания связей.

    курсовая работа , добавлен 10.03.2016

    Создание базы данных в Microsoft Access с помощью мастера шаблонов. Создание таблиц путём ввода данных, с помощью мастера таблиц или таблицы в режиме конструктора таблиц. Создание запросов в Microsoft Access, с помощью мастера или конструктора запросов.

    реферат , добавлен 08.09.2010

    Создание таблиц базы данных с помощью MS Access "Страны Азии". Форма базы данных и запросы к выборкам данных. Модификация структуры таблиц, создания связей между главными таблицами, редактирование данных и проектирование форм для реальной базы данных.

    контрольная работа , добавлен 25.11.2012

    Создание таблиц базы данных в режиме конструктора. Наименование и структура таблиц базы данных "Библиотека". Применение поля подстановок и создание фиксированного списка значений для полей. Схема связи между таблицами. Формирование и выполнение запроса.

    контрольная работа , добавлен 24.07.2009

    Понятие нормализации таблиц базы данных и ее цели. Этапы процесса нормализации. Пример ненормализованных данных. Нормальные формы, к которым приводятся таблицы. Реляционная алгебра над учебной базой. База данных для предметной области "Учебные пособия".

    контрольная работа , добавлен 30.07.2010

    Разработка базы данных деканата магистратуры, включающую в себя информация о студентах, форму обучения, экзамены. Создание таблиц и запросов в режиме конструктора, отчета с помощью мастера отчетов. Вывод данных с помощью форм. Вкладки кнопочной формы.

    курсовая работа , добавлен 18.07.2014

    Автоматизация деятельности книжного магазина. Информация базы данных. Заполнение полей таблиц "Книги", "Покупатель", "Поставщик", "Сотрудники". Создание запроса в режиме конструктора. Вывод данных с помощью форм. Разработка приложения СУБД MS Access.

    курсовая работа , добавлен 13.01.2015

    Создание базы данных, планирование разработки и системные требования. Проектирование базы данных в среде Microsoft Access, элементы и типы данных. Создание таблицы и использование конструктора для их модернизации. Построение запросов и создание макросов.

    курсовая работа , добавлен 16.04.2011

    Создание программ, позволяющих создавать базы данных. Создание таблицы базы данных. Создание схемы данных. Создание форм, отчетов, запросов. Увеличение объема и структурной сложности хранимых данных. Характеристика системы управления базой данных Access.

2.1 SCADA-системы: общие понятия и структура.

Диспетчеризация обеспечивает согласованную работу отдельных звеньев управляемого объекта в целях повышения технико-экономических показателей, ритмичности работы, лучшего использования производственных мощностей, контроль с целью предупреждения возникновения аварийных ситуаций. Система позволяет вести оперативный учет потребления энергоресурсов и контролировать параметры инженерного оборудования.

Когда оборудование расположено без постоянного обслуживающего персонала или другом удаленном месте, возникает необходимость удаленного контроля и управления с центрального диспетчерского пункта. Также необходимо ведение записей состояния оборудования, отклонение от нормы его параметров с возможностью дальнейшей архивации и просмотра данных за любой период времени.

Системы управления, позволяющие реализовать функции удаленного контроля и управления, называют системами управления зданием или системами диспетчеризации.

Диспетчеризации подлежат системы:

Электроснабжения и электроосвещения;

Противопожарного оборудования и устройства пожаротушения;

Вентиляции и кондиционирования воздуха;

Отопления и горячего водоснабжения;

Канализационных устройств и дренажа;

Газораспределительных пунктов и станций.

Необходимо отметить, что система диспетчеризации является надстройкой над локальной автоматикой, так как основные задачи управления инженерным

оборудованием будут выполняться независимо от функционирования системы

диспетчеризации.

Связи между элементами системы могут быть выполнены по самым разным технологиям, с применением различных типов коммуникационных интерфейсов – как проводных, так и беспроводных.

Существенным достоинством систем диспетчеризации является поддержка нескольких интерфейсов (протоколов) связи и в случаях совместного применения с оборудованием других производителей имеется возможность дальнейшего расширения системы без «привязки» к конкретному оборудованию.

Зачастую необходимо, чтобы информация о событиях, требующих внимания и

быстрого реагирования обслуживающего персонала, доходила помимо диспетчерского пункта лицам, которые непосредственно обслуживают систему, у которых не всегда под рукою персональный компьютер. В этом случае помимо передачи данных на диспетчерский пункт, информация с помощью SMS может передаваться непосредственно на мобильный телефон.

В полноценную систему диспетчеризации обычно включается сразу сервер диспетчеризации – специально выделенный компьютер, на который устанавливается SCADA система.

SCADA – это аббревиатура от слов Supervisory Control Data Acguistion (диспетчерское управление и сбор данных). SCADA представляет собой программное обеспечение, выполняющее следующие функции:

Сбор данных о состоянии инженерного оборудования от контроллеров щитов локальной автоматики;

Хранение и отображение информации о функционировании оборудования за весь срок его работы;

Уведомление обслуживающего персонала о требующих внимания событиях с помощью е-mail, SMS или факс;

Доступ к контролю и управлению оборудованием по локальной сети объекта, через Интернет и т.д.

Сервер диспетчеризации с установленной на нем SCADA системой часто называют «верхний уровень».

SCADA система имеет возможность расширяться/сращиваться с другими системами управления.

2.2 Функциональная структура SCADA.

Удаленные терминалы (RTU). Каналы связи (CS). Диспетчерские пункты управления (MTU). Операционные системы. Прикладное программное обеспечение. Центральный диспетчерский пункт.

Диспетчерское управление и сбор данных (SCADA Supervisory Control And Data Acquisition) является основным и в настоящее время остается наиболее перспективным методом автоматизированного управления сложными динамическими системами (процессами) в жизненно важных и критичных с точки зрения безопасности и надежности областях. Именно на принципах диспетчерского управления строятся крупные автоматизированные системы в промышленности и энергетике, на транспорте, в космической и военной областях, в различных государственных структурах.

За последние 10 15 лет за рубежом резко возрос интерес к проблемам построения высокоэффективных и высоконадежных систем диспетчерского управления и сбора данных. С одной стороны, это связано со значительным прогрессом в области вычислительной техники, программного обеспечения и телекоммуникаций, что увеличивает возможности и расширяет сферу применения автоматизированных систем. С другой стороны, развитие информационных технологий, повышение степени автоматизации и перераспределение функций между человеком и аппаратурой обострило проблему взаимодействия человека-оператора с системой управления. Расследование и анализ большинства аварий и происшествий в авиации, наземном и водном транспорте, промышленности и энергетике, часть из которых привела к катастрофическим последствиям, показали, что, если в 60-х годах ошибка человека являлась первоначальной причиной лишь 20% инцидентов (80%, соответственно, за технологическими неисправностями и отказами), то в 90-х годах доля человеческого фактора возросла до 80%, причем, в связи с постоянным совершенствованием технологий и повышением надежности электронного оборудования и машин, доля эта может еще возрасти (рис.1)

Рис.1. Тенденции причин аварий в сложных автоматизированных системах

Основной причиной таких тенденций является старый традиционный подход к построению сложных автоматизированных систем управления, который применяется часто и в настоящее время: ориентация в первую очередь на применение новейших технических (технологических) достижений, стремление повысить степень автоматизации и функциональные возможности системы и, в то же время, недооценка необходимости построения эффективного человеко-машинного интерфейса (HMI Human-Machine Interface), т.е. интерфейса, ориентированного на пользователя (оператора). Не случайно именно на последние 15 лет, т.е. период появления мощных, компактных и недорогих вычислительных средств, пришелся пик исследований в США по проблемам человеческого фактора в системах управления, в том числе по оптимизации архитектуры и HMI-интерфейса систем диспетчерского управления и сбора данных.

Изучение материалов по проблемам построения эффективных и надежных систем диспетчерского управления показало необходимость применения нового подхода при разработке таких систем: human-centered design(или top-down, сверху-вниз), т.е. ориентация в первую очередь на человека-оператора (диспетчера) и его задачи, вместо традиционного и повсеместно применявшегося hardware-centered (или bottom-up, снизу-вверх), в котором при построении системы основное внимание уделялось выбору и разработке технических средств (оборудования и программного обеспечения). Применение нового подхода в реальных космических и авиационных разработках и сравнительные испытания систем в Национальном управлении по аэронавтике и исследованию космического пространства (NASA), США, подтвердили его эффективность, позволив увеличить производительность операторов, на порядок уменьшить процедурные ошибки и свести к нулю критические (не корректируемые) ошибки операторов.

SCADA - процесс сбора информации реального времени с удаленных точек (объектов) для обработки, анализа и возможного управления удаленными объектами. Требование обработки реального времени обусловлено необходимостью доставки (выдачи) всех необходимых событий (сообщений) и данных на центральный интерфейс оператора (диспетчера). В то же время понятие реального времени отличается для различных SCADA-систем.

Прообразом современных систем SCADA на ранних стадиях развития автоматизированных систем управления являлись системы телеметрии и сигнализации.

Все современные SCADA-системы включают три основных структурных компонента (см. рис. 2) Remote Terminal Unit (RTU) удаленный терминал, осуществляющий обработку задачи (управление) в режиме реального времени. Спектр его воплощений широк от примитивных датчиков, осуществляющих съем информации с объекта, до специализированных многопроцессорных отказоустойчивых вычислительных комплексов, осуществляющих обработку информации и управление в режиме жесткого реального времени. Конкретная его реализация определяется конкретным применением. Использование устройств низкоуровневой обработки информации позволяет снизить требования к пропускной способности каналов связи с центральным диспетчерским пунктом.

Рис. 2. Основные структурные компоненты SCADA-системы

Master Terminal Unit (MTU), Master Station (MS) диспетчерский пункт управления (главный терминал); осуществляет обработку данных и управление высокого уровня, как правило, в режиме мягкого (квази-) реального времени; одна из основных функций обеспечение интерфейса между человеком-оператором и системой (HMI, MMI). В зависимости от конкретной системы MTU может быть реализован в самом разнообразном виде от одиночного компьютера с дополнительными устройствами подключения к каналам связи до больших вычислительных систем (мэйнфреймов) и/или объединенных в локальную сеть рабочих станций и серверов. Как правило, и при построении MTU используются различные методы повышения надежности и безопасности работы системы.

Communication System (CS) коммуникационная система (каналы связи), необходима для передачи данных с удаленных точек (объектов, терминалов) на центральный интерфейс оператора-диспетчера и передачи сигналов управления на RTU (или удаленный объект в зависимости от конкретного исполнения системы).

Функциональная структура SCADA

Существует два типа управления удаленными объектами в SCADA: автоматическое и инициируемое оператором системы.

Шеридан (рис.3) выделил четыре основных функциональных компонента систем диспетчерского управления и сбора данных человек-оператор, компьютер взаимодействия с человеком, компьютер взаимодействия с задачей (объектом), задача (объект управления), а также определил пять функций человека-оператора в системе диспетчерского управления и охарактеризовал их как набор вложенных циклов, в которых оператор.


Рис. 3. Основные структурные компоненты SCADA-систем

Планирует, какие следующие действия необходимо выполнить; обучает (программирует) компьютерную систему на последующие действия; отслеживает результаты (полу)автоматической работы системы; вмешивается в процесс в случае критических событий, когда автоматика не может справиться, либо при необходимости подстройки (регулировки) параметров процесса; обучается в процессе работы (получает опыт).

Данное представление SCADA явилось основой для разработки современных методологий построения эффективных диспетчерских систем.

2.3 Особенности SCADA как процесса управления

Области применения SCADA-систем

Основными областями применения систем диспетчерского управления (по данным зарубежных источников), являются:

Управление передачей и распределением электроэнергии;

Промышленное производство;

Производство электроэнергии;

Водозабор, водоочистка и водораспределение;

Добыча, транспортировка и распределение нефти и газа;

Управление на транспорте (все виды транспорта: авиа, метро, железнодорожный, автомобильный, водный);

Телекоммуникации;

Военная область.

В настоящее время в развитых зарубежных странах наблюдается настоящий подъем по внедрению новых и модернизации существующих автоматизированных систем управления в различных отраслях экономики; в подавляющем большинстве случаев эти системы строятся по принципу диспетчерского управления и сбора данных. Характерно, что в индустриальной сфере (в обрабатывающей и добывающей промышленности, энергетике и др.) наиболее часто упоминаются именно модернизация существующих производств SCADA-системами нового поколения.


Локальная система управления

Локальная система – это совокупность оборудования, которое предназначено для местного (локального) управления, защиты, контроля, мониторинга, сбора и передачи технологических параметров инженерного оборудования.

Локальные системы являются полностью независимыми системами и могут работать по своему циклу без взаимодействия с системами «верхнего уровня».

Система состоит из следующих компонентов:

Датчики;

Локальный контролер/контроллеры;

Исполнительные устройства.

Датчики предназначены для получения контроллерами необходимой информации о состоянии оборудования. Датчики бывают двух типов: дискретные (релейные), которые могут передавать только информацию вида «Норма», «Отклонение» и аналоговые – которые передают текущее значение параметра. Локальный контроллер является универсальным инструментом для обработки и анализа информации с датчиков, и управления, контроля и хранения информации о состоянии оборудования. Применяемые контроллеры могут быть как свободно конфигурируемые, в которых уже прописаны конкретные схемы применения и работы с инженерным оборудованием, так и свободно программируемые, в которых возможно запрограммировать любой алгоритм работы устройства.

Основной задачей исполнительных устройств является управление/изменение параметров работы инженерного оборудования. По своему назначению исполнительные устройства могут быть как регулирующие так и защитные.

Центральный диспетчерский пункт

Центральный Диспетчерский Пункт (далее ЦДП) – это программно-аппаратный комплекс, выполняющий функции сбора, обработки и передачи всей необходимой информации для безопасной и надежной работы объектов, на которых установлены локальные системы.

Центральный Диспетчерский Пункт предназначен для:

1. Предотвращения и дистанционного выявление причины аварии или сбоя.

Диспетчеризация позволяет предотвратить аварийную ситуацию или порчу установленного оборудования. В случае выхода за пределы параметров технологического оборудования система своевременно отреагирует на отклонение и, в зависимости от степени приоритета аварии, передаст на ЦДП сообщение об отклонении параметра с возможностью блокирования вышедших из строя элементов или их отключения. Если авария все же случилась, оперативная бригада выезжает на место происшествия уже зная, что произошло и почему, с необходимым инструментом, запчастями, комплектующими. В конечном итоге это повлияет на скорость устранения аварии.

2. Помощи обслуживающему персоналу в принятии оперативных решений.

Диспетчеризация позволяет избежать поспешных действий персонала и дистанционно точно спланировать комплекс оперативных мероприятий персонала станции до приезда сервисной бригады.

3. Минимизации влияния человеческого фактора при аварийной ситуации. В случае срабатывания аварийной сигнализации зачастую совершаются поспешные действия персонала для предотвращения аварии, и в случае неправильного выявления причины это может привести к серьёзным последствиям и длительному сбою в работе.

4. Учёта потребляемых энергоресурсов. Комплекс предназначен для учета, архивации и передачи информации в реальном масштабе времени про расход природного газа, тепла, холодной и горячей воды и электроэнергии. EXO4 – это программное обеспечение системы диспетчеризации. EXO4 имеет графический интерфейс пользователя. Все установки и команды выполняются с помощью клавиатуры и мыши.

Программное обеспечение поставляется только вместе с соответствующим аппаратным ключом, который конструктивно выполнен в виде USB-ключа или платы, которая вставляется в свободный PCI слот компьютера.

EXO4 и система EXO выполняет следующие функции:

Динамическая визуализация объектов и процессов;

Управление и мониторинг объектами;

Дистанционное чтение аварий и данных;

Многопользовательская система со структурой авторизации и управления

пользователями;

Регистрация и управление событиями;

Слежение за авариями и состояниями (4 уровня приоритетов аварий);

Создание рапортов и отчетов об авариях и неисправностях;

Подтверждение, блокировка и разблокировка аварийных сообщений;

Звуковое и визуальное сопровождение аварийных сообщений;

Перенаправление сообщений об авариях на один или несколько принтеров в

зависимости от времени и (или) события;

Построение графиков и трендов (точек) в реальном времени;

Управление данными и архивированием;

Сетевая коммуникация по технологии клиент-сервер и поддержка различных

протоколов;

Всплывающие подсказки;

Временные программы;

Многооконный интерфейс;

Управление базами данных;

Поддержка проводных и беспроводных устройств передачи данных;

Автоматический переход на зимнее и летнее время;

Синхронизация системы.

Пользователю предоставляется удобный интуитивно понятный графический интерфейс. Управление и визуализация всем инженерным оборудованием может происходить как с использованием мнемосхем, так и при помощи анимации, графиков, с использованием фотоматериалов и гистограмм.

Линии связи

Под понятием линии связи принимают системы для передачи и приема информации с помощью различных технических средств.

В зависимости от способа передачи информации различают проводную стационарную связь (посредством передачи пакетов информации по телефонным линиям) и мобильную радиосвязь (посредством радиосигнала).

Услуги проводной телефонной связи оказывают как государственные компании, так и некоторые коммерческие операторы.

При использовании проводной связи оптимальным решением является использование защищенных каналов связи, называемых еще VPN каналами. Информация, передаваемая по таким каналам, кодируется специальными аппаратными средствами и не может быть использована сторонними пользователями. Есть также возможность защитить каналы, используя обмен только между конечными точками каналов. Существует три варианта подключения: используя выделенную Ethernet линию или широкополосное ADSL соединение (использование сети Интернет) и по коммутированному телефонному соединению с помощью телефонных модемов. Каждый из приведенных вариантов зависит от технической возможности оператора в том или ином регионе.


Услуги мобильной радиосвязи предоставляются исключительно коммерческими Операторами. Способы передачи данных аналогичны проводной передаче с той лишь разницей, что вместо коммутируемых соединений используются базовые станции оператора услуг. При этом есть возможность заказывать определенный объем полученной и переданной информации за календарный месяц или же платить по факту использования за каждый месяц предоставления услуги.

При выборе поставщика услуг связи необходимо знать, располагает ли оператор полным комплектом разрешительных документов и лицензий на все виды осуществляемой деятельности, а также имеет сертификаты соответствия на все поставляемые системы и средства связи.


2.4 Тенденции развития технических средств систем диспетчерского управления

Общие тенденции

Прогресс в области информационных технологий обусловил развитие всех 3-х основных структурных компонентов систем диспетчерского управления и сбора данных RTU, MTU, CS, что позволило значительно увеличить их возможности; так, число контролируемых удаленных точек в современной SCADA-системе может достигать 100000.

Основная тенденция развития технических средств (аппаратного и программного обеспечения) SCADA миграция в сторону полностью открытых систем. Открытая архитектура позволяет независимо выбирать различные компоненты системы от различных производителей; в результате расширение функциональных возможностей, облегчение обслуживания и снижение стоимости SCADA-систем.

Удаленные терминалы (RTU)

Главная тенденция развития удаленных терминалов увеличение скорости обработки и повышение их интеллектуальных возможностей. Современные терминалы строятся на основе микропроцессорной техники, работают под управлением операционных систем реального времени, при необходимости объединяются в сеть, непосредственно или через сеть взаимодействуют с интеллектуальными электронными датчиками объекта управления и компьютерами верхнего уровня.

Конкретная реализация RTU зависит от области применения. Это могут быть специализированные (бортовые) компьютеры, в том числе мультипроцессорные системы, обычные микрокомпьютеры или персональные ЭВМ (РС); для индустриальных и транспортных систем существует два конкурирующих направления в технике RTU индустриальные (промышленные) PC и программируемые логические контроллеры (в русском переводе часто встречается термин промышленные контроллеры) PLC.

Индустриальные компьютеры представляют собой, как правило, программно совместимые с обычными коммерческими РС машины, но адаптированные для жестких условий эксплуатации буквально для установки на производстве, в цехах, газокомпрессорных станциях и т.д. Адаптация относится не только к конструктивному исполнению, но и к архитектуре и схемотехнике, так как изменения температуры окружающей среды приводят к дрейфу электрических параметров. В качестве устройств сопряжения с объектом управления данные системы комплектуются дополнительными платами (адаптерами) расширения, которых на рынке существует большое разнообразие от различных изготовителей (как, впрочем, и самих поставщиков промышленных РС). В качестве операционной системы в промышленных PC, работающих в роли удаленных терминалов, все чаще начинает применяться Windows NT, в том числе различные расширения реального времени, специально разработанные для этой операционной системы (подробнее см. ниже).

Промышленные контроллеры (PLC) представляют собой специализированные вычислительные устройства, предназначенные для управления процессами (объектами) в реальном времени. Промышленные контроллеры имеют вычислительное ядро и модули ввода-вывода, принимающие информацию (сигналы) с датчиков, переключателей, преобразователей, других устройств и контроллеров, и осуществляющие управление процессом или объектом выдачей управляющих сигналов на приводы, клапаны, переключатели и другие исполнительные устройства. Современные PLC часто объединяются в сеть (RS-485, Ethernet, различные типы индустриальных шин), а программные средства, разрабатываемые для них, позволяют в удобной для оператора форме программировать и управлять ими через компьютер, находящийся на верхнем уровне SCADA-системы диспетчерском пункте управления (MTU). Исследование рынка PLC показало, что наиболее развитой архитектурой, программным обеспечением и функциональными возможностями обладают контроллеры фирмSiemens, Fanuc Automation (General Electric), Allen-Bradley (Rockwell), Mitsubishi. Представляет интерес также продукция фирмы CONTROL MICROSYSTEMS промышленные контроллеры для систем мониторинга и управления нефте- и газопромыслами, трубопроводами, электрическими подстанциями, городским водоснабжением, очисткой сточных вод, контроля загрязнения окружающей среды.

Много материалов и исследований по промышленной автоматизации посвящено конкуренции двух направлений PC и PLC; каждый из авторов приводит большое количество доводов за и против по каждому направлению. Тем не менее, можно выделить основную тенденцию: там, где требуется повышенная надежность и управление в жестком реальном времени, применяются PLC. В первую очередь это касается применений в системах жизнеобеспечения (например, водоснабжение, электроснабжение), транспортных системах, энергетических и промышленных предприятиях, представляющих повышенную экологическую опасность. Примерами могут служить применение PLC семейства Simatic (Siemens) в управлении электропитанием монорельсовой дороги в Германии или применение контроллеров компании Allen-Bradley (Rockwell) для модернизации устаревшей диспетчерской системы аварийной вентиляции и кондиционирования на плутониевом заводе 4 в Лос-Аламосе. Аппаратные средства PLC позволяют эффективно строить отказоустойчивые системы для критических приложений на основе многократного резервирования. Индустриальные РС применяются преимущественно в менее критичных областях (например, в автомобильной промышленности, модернизация производства фирмой General Motors), хотя встречаются примеры и более ответственных применений (метро в Варшаве управление движением поездов). По оценкам экспертов, построение систем на основе PLC, как правило, является менее дорогостоящим вариантом по сравнению с индустриальными компьютерами.

Технологический мониторинг процессов производства

Подробнее

Предназначена для непрерывного контроля за всеми параметрами технологических процессов, характеризующих текущее состояние производства, в режиме реального времени. Объектами мониторинга являются технологические установки, резервуары, склады, узлы учета, производственные линии и др. Основная задача технологического мониторинга – это максимально точно передавать состояние всех технологических и производственных процессов.

Планирование и учет перемещения сырья и полуфабрикатов

Подробнее

Предназначена для планирования и учета операций перемещения сырья, полуфабрикатов и готовых продуктов. В рамках решения задачи планирования перемещения реализуется: интеграция с подсистемами планирования, приемки сырья и отгрузки готовой продукции; расчет плана операций перемещения; прогнозирование состояния резервуарных парков, складов; анализ планируемых и фактически совершенных операций движения нефти и нефтепродуктов. В рамках решения задачи учета перемещения реализуется: оперативный учёт поступления сырья; оперативный учёт направлений и потоков передачи сырья, полуфабрикатов и готовых продуктов; оперативный учёт количества сырья, полуфабрикатов и готовых продуктов в резервуарных парках, на складах предприятия.

Контроль соблюдения технологических регламентов

Подробнее

Предназначена для непрерывного контроля соблюдения норм технологических регламентов ведения процессов по производственным объектам. В подсистеме выполняются следующие функции: задание набора в ручную и/или на основе архивных данных технологических режимов для выделенного технологического объекта; визуализация и выдача тревожных сообщений; формирование специализированных отчетов и сводок по нарушениям технологических режимов.

Контроль состояния технологического оборудования

Подробнее

Предназначена для непрерывного мониторинга и прогнозирования фактического состояния технологического оборудования. Для этого подсистема позволяет автоматизировать процессы: контроля работы/простоя оборудования; учета и анализа простоев; учета наработки оборудования; расчета ключевых показателей эффективности; интеграции со специализированными системами диагностики.

Контроль ключевых показателей

Подробнее

Предназначена для расчета и контроля в реальном времени ключевых показателей фактической работы производства на основе данных по качеству, технологии и энергетике: оперативный контроль выполнения производственных планов; расчет в реальном времени техноэкономических показателей по каждому процессу и объекту; глубокий анализ производственных процессов.

Диспетчерская отчетность производства

Подробнее

Предназначена для автоматизированного формирования полного набора отчетов, рапортов, сводок содержащих информацию о состоянии производственного процесса. Формирование диспетчерской отчетности проводится с любой дискретностью, все отчеты обновляются в течение суток с указанной дискретностью. Примеры отчетов: режимный лист; сводный отчет о работе завода; остатки по паркам; изменение остатков по сырью, полуфабрикатам, товару; отклонение от плана; любые специализированные отчеты произвольной формы.